Solutions for In-Class Problems 23 for Wednesday, April 25

These problems are from Pre-Class Problems 23.

You can go to the solution for each problem by clicking on the problem letter.

1. Find the sum of the following arithmetic sequences.
a. $\quad \sum_{i=1}^{25}(3 i-7)$
b. $\sum_{j=1}^{101}(j+4)$
2. Determine if the following sequences are geometric. If the sequence is geometric, then find the common ratio.
a. $3,-6,12,-24,48, \ldots$
b. $5, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, 1 \ldots$
3. Write the first five terms of the geometric sequence $\left\{a_{n}\right\}$ with the given first term and common ratio.
a. $\quad a_{1}=-4$ and $r=3$
b. $\quad a_{1}=1$ and $r=-\frac{1}{4}$
4. Find the sum of the following geometric sequences, if possible.
a. $\quad \sum_{n=1}^{5}(-3) 2^{n-1}$
b. $\sum_{n=1}^{5}\left(-\frac{1}{5}\right)^{n-1}$
c. $\sum_{n=1}^{\infty} 5\left(\frac{3}{4}\right)^{n-1}$
d. $\sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n-1}$
e. $\sum_{n=1}^{\infty} 12\left(\frac{5}{4}\right)^{n-1}$

SOLUTIONS:

1a. $\sum_{i=1}^{25}(3 i-7)$

$$
a_{i}=3 i-7 \Rightarrow a_{1}=-4 \text { and } a_{25}=68
$$

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{25}=\frac{25(-4+68)}{2}=\frac{25(64)}{2}=25(32)=$ $25 \cdot 4 \cdot 8=100 \cdot 8=800$

Answer: 800

1b. $\sum_{j=1}^{101}(j+4)$
Back to Problem 1.
$a_{j}=j+4 \Rightarrow a_{1}=5$ and $a_{101}=105$

Thus, $S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \Rightarrow S_{101}=\frac{101(5+105)}{2}=\frac{101(110)}{2}=101(55)=$
$55(101)=55(100+1)=5500+55=5555$

Answer: 5555

2a. $3,-6,12,-24,48, \ldots$
Back to Problem 2.

$$
\begin{array}{ll}
\frac{a_{2}}{a_{1}}=\frac{-6}{3}=-2 & \frac{a_{3}}{a_{2}}=\frac{12}{-6}=-2 \\
\frac{a_{4}}{a_{3}}=\frac{-24}{12}=-2 & \frac{a_{5}}{a_{4}}=\frac{48}{-24}=-2
\end{array}
$$

NOTE: The ratio between each term and its preceding term is -2 .

Answer: Yes. The common ratio is -2 .

2b. $5, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, 1 \ldots$
Back to Problem 2.
$\frac{a_{2}}{a_{1}}=\frac{5}{2} \div 5=\frac{5}{2} \cdot \frac{1}{5}=\frac{1}{2} \quad \frac{a_{3}}{a_{2}}=\frac{5}{3} \div \frac{5}{2}=\frac{5}{3} \cdot \frac{2}{5}=\frac{2}{3}$

This sequence is not geometric. The ratio between the second term and the first term is $\frac{1}{2}$. However, the ratio between the third term and the second term is $\frac{2}{3}$.

Answer: No

3a. $\quad a_{1}=-4$ and $r=3$
Back to Problem 3.

Answer: $-4,-12,-36,-108,-324$

3b. $\quad a_{1}=1$ and $r=-\frac{1}{4}$

Answer: $1,-\frac{1}{4}, \frac{1}{16},-\frac{1}{64}, \frac{1}{256}$

4a. $\sum_{n=1}^{5}(-3) 2^{n-1}$
Back to Problem 4.
$a_{1}=-3, r=2$, and $n=5$

Thus, $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{5}=\frac{-3\left(2^{5}-1\right)}{2-1}=\frac{-3(32-1)}{1}=$
$-3(31)=-93$

Answer: - 93

4b. $\sum_{n=1}^{5}\left(-\frac{1}{5}\right)^{n-1}$
Back to Problem 4.
$a_{1}=1, r=-\frac{1}{5}$, and $n=5$

NOTE: $S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \Rightarrow S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

Thus, $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \Rightarrow S_{5}=\frac{1\left[1-\left(-\frac{1}{5}\right)^{5}\right]}{1-\left(-\frac{1}{5}\right)}=\frac{1-\left(-\frac{1}{3125}\right)}{1+\frac{1}{5}}=$

$$
\frac{1+\frac{1}{3125}}{1+\frac{1}{5}} \cdot \frac{3125}{3125}=\frac{3125+1}{3125+625}=\frac{3126}{3750}=\frac{1563}{1875}=\frac{521}{625}
$$

Answer: $\frac{521}{625}$

4c. $\sum_{n=1}^{\infty} 5\left(\frac{3}{4}\right)^{n-1}$
Back to Problem 4.
$r=\frac{3}{4} \Rightarrow|r|=\frac{3}{4}<1 \Rightarrow$ the series is summable; $a_{1}=5$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{5}{1-\frac{3}{4}}=\frac{5}{1-\frac{3}{4}} \cdot \frac{4}{4}=\frac{20}{4-3}=\frac{20}{1}=20$

Answer: 20

4d. $\quad \sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n-1}$
Back to Problem 4.
$r=-\frac{2}{3} \Rightarrow|r|=\frac{2}{3}<1 \Rightarrow$ the series is summable; $a_{1}=1$

Thus, $S=\frac{a_{1}}{1-r} \Rightarrow S=\frac{1}{1+\frac{2}{3}}=\frac{1}{1+\frac{2}{3}} \cdot \frac{3}{3}=\frac{3}{3+2}=\frac{3}{5}$

Answer: $\frac{3}{5}$

4e. $\sum_{n=1}^{\infty} 12\left(\frac{5}{4}\right)^{n-1}$
Back to Problem 4.
$r=\frac{5}{4} \Rightarrow|r|=\frac{5}{4}>1 \Rightarrow$ the series is not summable

Answer: Sum does not exist

