Solutions for In-Class Problems 14 for Wednesday, March 21

These problems are from Pre-Class Problems 14.

1. Identity the horizontal asymptotes (if any). If the function has a horizontal asymptote, determine if the graph crosses the asymptote.
a. $h(x)=\frac{x^{2}+5 x}{4 x^{2}+9 x-12}$
b. $f(x)=\frac{x^{3}-6 x^{2}+9}{2 x^{2}+7 x-14}$
2. Determine the vertical and horizontal asymptotes for the graph of the following rational functions (if any). If the function has a horizontal asymptote, determine if the graph crosses the asymptote. Then sketch the graph of the rational function.
a. $\quad f(x)=\frac{2 x+5}{3 x-7}$
b. $\quad g(x)=\frac{8 x}{x^{2}-16}$
3. Sketch the graph of the following functions. State the domain of the function and use the sketch to state the range of the function.
a. $f(x)=5\left(\frac{2}{3}\right)^{x-4}$
b. $y=7^{t+4}+2$
c. $g(x)=-4 e^{-x}-9$

SOLUTIONS:

1a. $\quad h(x)=\frac{x^{2}+5 x}{4 x^{2}+9 x-12}$
Back to Problem 1.

$$
h(x)=\frac{x^{2}\left(1+\frac{5}{x}\right)}{x^{2}\left(4+\frac{9}{x}-\frac{12}{x^{2}}\right)}=\frac{1+\frac{5}{x}}{4+\frac{9}{x}-\frac{12}{x^{2}}}
$$

As $x \rightarrow-\infty$ and as $x \rightarrow \infty, \frac{5}{x} \rightarrow 0, \frac{9}{x} \rightarrow 0$, and $\frac{12}{x^{2}} \rightarrow 0$. Thus, as $x \rightarrow-\infty$ and as $x \rightarrow \infty, h(x) \rightarrow \frac{1+0}{4+0-0}=\frac{1}{4}$.

Thus, $y=\frac{1}{4}$ is a horizontal asymptotes for the graph of the rational function h.

The graph of the rational function h will cross the horizontal asymptote $y=\frac{1}{4}$ if the equation $h(x)=\frac{1}{4}$ has a real number solution.
$h(x)=\frac{1}{4} \Rightarrow \frac{x^{2}+5 x}{4 x^{2}+9 x-12}=\frac{1}{4} \Rightarrow 4 x^{2}+9 x-12=$
$4\left(x^{2}+5 x\right) \Rightarrow 4 x^{2}+9 x-12=4 x^{2}+20 x \Rightarrow$
$9 x-12=20 x \Rightarrow-12=11 x \Rightarrow x=-\frac{12}{11}$.

The graph of the rational function h will cross the horizontal asymptote $y=\frac{1}{4}$ at the point $\left(-\frac{12}{11}, \frac{1}{4}\right)$.

Answer: Horizontal Asymptote: $y=\frac{1}{4}$
Graph crosses horizontal asymptote at $\left(-\frac{12}{11}, \frac{1}{4}\right)$

1b. $f(x)=\frac{x^{3}-6 x^{2}+9}{2 x^{2}+7 x-14}$
Back to Problem 1.

$$
f(x)=\frac{2 x^{2}+7 x-14}{x^{3}-6 x^{2}+9}
$$

$$
f(x)=\frac{x^{3}\left(\frac{2}{x}+\frac{7}{x^{2}}-\frac{14}{x^{3}}\right)}{x^{3}\left(1-\frac{6}{x}+\frac{9}{x^{3}}\right)}=\frac{\frac{2}{x}+\frac{7}{x^{2}}-\frac{14}{x^{3}}}{1-\frac{6}{x}+\frac{9}{x^{3}}}
$$

As $x \rightarrow-\infty$ and as $x \rightarrow \infty, f(x) \rightarrow \frac{0+0-0}{1-0+0}=\frac{0}{1}=0$.

Thus, $y=0$ is a horizontal asymptotes for the graph of the rational function f.

The graph of the rational function f will cross the horizontal asymptote $y=0$ if the equation $f(x)=0$ has a real number solution.

$$
f(x)=0 \Rightarrow \frac{2 x^{2}+7 x-14}{x^{3}-6 x^{2}+9}=0 \Rightarrow 2 x^{2}+7 x-14=0
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-7 \pm \sqrt{49-4(2)(-14)}}{4}= \\
& \frac{-7 \pm \sqrt{49+112}}{4}=\frac{-7 \pm \sqrt{161}}{4}
\end{aligned}
$$

Answer: Horizontal Asymptote: $y=0$
Graph crosses horizontal asymptote at $\left(\frac{-7-\sqrt{161}}{4}, 0\right)$ and $\left(\frac{-7+\sqrt{161}}{4}, 0\right)$

2a. I will owe you the solution for this problem.
Back to Problem 2.
2b. I will owe you the solution for this problem.
Back to Problem 2.

3a. $f(x)=5\left(\frac{2}{3}\right)^{x-4}$
Back to Problem 3.

The domain of f is the set of all real numbers.
To graph the function f, we set $f(x)=y$ and graph the equation $y=5\left(\frac{2}{3}\right)^{x-4}$.

The graph of $y=5\left(\frac{2}{3}\right)^{x-4}$ is the graph of $y=5\left(\frac{2}{3}\right)^{x}$ shifted 4 units to the right.

The range of f is $(0, \infty)$.

NOTE: The y-coordinate of the y-intercept is obtained by setting $x=0$ in the equation $y=5\left(\frac{2}{3}\right)^{x-4}$. Thus, we have that $y=5\left(\frac{2}{3}\right)^{-4}=5\left(\frac{3}{2}\right)^{4}$
$=5\left(\frac{81}{16}\right)=\frac{405}{16} \approx 25$. Thus, the y-intercept is the point $\left(0, \frac{405}{16}\right)$.

NOTE: The horizontal shift of 4 units to the right is determined from the expression $x-4$ in the equation $y=5\left(\frac{2}{3}\right)^{x-4}$.

3b. $y=7^{t+4}+2$
Back to Problem 3.

The domain of the function is the set of all real numbers.

$$
y=7^{t+4}+2 \Rightarrow y-2=7^{t+4}
$$

The graph of $y-2=7^{t+4}$ is the graph of $y=7^{t}$ shifted 4 units to the left and 2 units upward.

The range of the function is $(2, \infty)$.
The y-coordinate of the y-intercept is obtained by setting $4=0$ in the equation $y=7^{t+4}+2$. Thus, we have that $y=7^{4}+2=2401+2=$ 2403. Thus, the y-intercept is the point $(0,2403)$.

NOTE: The horizontal shift of 4 units to the left is determined from the expression $t+4$ in the equation $y-2=7^{t+4}$ and the vertical shift of 2 units upward is determined from the expression $y-2$ in the equation.

3c. $g(x)=-4 e^{-x}-9$
Back to Problem 3.

The domain of g is the set of all real numbers.

To graph the function g, we set $g(x)=y$ and graph the equation

$$
y=-4 e^{-x}-9 .
$$

$$
y=-4 e^{-x}-9 \Rightarrow y+9=-4 e^{-x}
$$

The graph of $y+9=-4 e^{-x}$ is the graph of $y=-4 e^{-x}=-4\left(\frac{1}{e}\right)^{x}$ shifted 9 units downward. Since $e \approx 2.7>1$, then $\frac{1}{e}<1$.

The graph of $y=4 e^{-x}=4\left(\frac{1}{e}\right)^{x}$ looks like the following.

The graph of $y=-4 e^{-x}=-4\left(\frac{1}{e}\right)^{x}$ looks like the following.

Now, the graph of $y+9=-4 e^{-x}$ looks like the following.

The range of g is $(-\infty,-9)$. Note that the y-intercept is the point $(0,-13)$.

NOTE: The vertical shift of 9 units downward is determined from the expression $y+9$ in the equation $y+9=-4 e^{-x}$.

