Solutions for In-Class Problems 13 for Wednesday, March 14
These problems are from Pre-Class Problems 13.

1. Find a polynomial p of degree 4 with zeros (roots) $\frac{2}{3}$ of multiplicity 2 and $-2 i$ and $2 i$ each of multiplicity 1.
2. Find a polynomial p of degree 3 with zeros (roots) $\frac{5}{3}, 4+\sqrt{5}$ and $4-\sqrt{5}$ each of multiplicity 1.
3. Solve the following inequalities.
a. $x^{2}+5 x-24<0$
b. $\frac{8-t}{4 t+7} \leq 0$
c. $\frac{x+2}{x^{2}-8 x+16}>0$
4. Determine the vertical asymptotes (if any).
a. $\quad f(x)=\frac{x^{2}-4}{2 x^{2}-x-15}$
b. $g(x)=\frac{3 x^{2}+2 x-8}{x+2}$

SOLUTIONS:

1. Find a polynomial p of degree 4 with zeros (roots) $\frac{2}{3}$ of multiplicity 2 and $-2 i$ and $2 i$ each of multiplicity 1. Back to Problem 1.

In order for $\frac{2}{3}$ to be a zero (root) of multiplicity 2, $(3 x-2)^{2}$ must be a factor of p.

In order for $-2 i$ to be a zero (root) of multiplicity $1, x+2 i$ must be a factor of p.

In order for $2 i$ to be a zero (root) of multiplicity $1, x-2 i$ must be a factor of p.

Thus, $p(x)=a(3 x-2)^{2}(x+2 i)(x-2 i)$, where a is any nonzero real number.

We will use the special product formula $(a+b)(a-b)=a^{2}-b^{2}$ for $(x+2 i)(x-2 i)$. Thus, $(x+2 i)(x-2 i)=x^{2}-4 i^{2}$. Since $i=\sqrt{-1}$, then $i^{2}=-1$. Thus, $(x+2 i)(x-2 i)=x^{2}-4 i^{2}=x^{2}+4$.

We will use the special product formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$ for $(3 x-2)^{2}$. Thus, $(3 x-2)^{2}=9 x^{2}-12 x+4$.

Thus, $p(x)=a(3 x-2)^{2}(x+2 i)(x-2 i)=$

$$
\begin{aligned}
& a\left(x^{2}+4\right)\left(9 x^{2}-12 x+4\right)=a\left(9 x^{4}-12 x^{3}+4 x^{2}+36 x^{2}-48 x+16\right) \\
& =a\left(9 x^{4}-12 x^{3}+40 x^{2}-48 x+16\right)
\end{aligned}
$$

Thus, $\quad p(x)=a\left(9 x^{4}-12 x^{3}+40 x^{2}-48 x+16\right)$, where a is any nonzero real number.

If you pick a to equal one, then you get the polynomial $p(x)=9 x^{4}-12 x^{3}+40 x^{2}-48 x+16$

Answer: $p(x)=9 x^{4}-12 x^{3}+40 x^{2}-48 x+16$

Back to Problem 1.

2. Find a polynomial p of degree 3 with zeros (roots) $\frac{5}{3}, 4+\sqrt{5}$ and $4-\sqrt{5}$ each of multiplicity 1.

Back to Problem 2.

In order for $\frac{5}{3}$ to be a zero (root) of multiplicity $1,3 x-5$ must be a factor of p.

In order for $4+\sqrt{5}$ to be a zero (root) of multiplicity $1, x-(4+\sqrt{5})$ $=x-4-\sqrt{5}$ must be a factor of p.

In order for $4-\sqrt{5}$ to be a zero (root) of multiplicity $1, x-(4-\sqrt{5})$ $=x-4+\sqrt{5}$ must be a factor of p.

Thus, $p(x)=a(3 x-5)[x-4-\sqrt{5}][x-4+\sqrt{5}]$, where a is any nonzero real number.

We can easily find the product $[x-4-\sqrt{5}][x-4+\sqrt{5}]$ using the special product formulas $(a-b)(a+b)=a^{2}-b^{2}$ and $(a-b)^{2}$ $=a^{2}-2 a b+b^{2}$.

First, use the special product formula $(a-b)(a+b)=a^{2}-b^{2}$ with a being $x-4$ and b being $\sqrt{5}$ and then use the second special product formula to find $(x-4)^{2}$. Thus,

$$
\begin{aligned}
& {[x-4-\sqrt{5}][x-4+\sqrt{5}]=(x-4)^{2}-(\sqrt{5})^{2}=} \\
& x^{2}-8 x+16-5=x^{2}-8 x+11
\end{aligned}
$$

Thus, $p(x)=a(3 x-5)[x-4-\sqrt{5}][x-4+\sqrt{5}]=$ $a(3 x-5)\left(x^{2}-8 x+11\right)$, where a is any nonzero real number.

Now, multiplying $(3 x-5)\left(x^{2}-8 x+11\right)$, we have that
$(3 x-5)\left(x^{2}-8 x+11\right)=3 x^{3}-24 x^{2}+33 x-5 x^{2}+40 x-55=$
$3 x^{3}-29 x^{2}+73 x-55$.

Thus, $\quad p(x)=a(3 x-5)\left(x^{2}-8 x+11\right)=3 x^{3}-29 x^{2}+73 x-55$, where a is any nonzero real number.

If you pick a to equal one, then you get the polynomial $p(x)=3 x^{3}-29 x^{2}+73 x-55$.
Answer: $p(x)=3 x^{3}-29 x^{2}+73 x-55$
Back to Problem 2.

3a. $x^{2}+5 x-24<0$
Back to Problem 3.

Step 1:

Find when the nonlinear expression $x^{2}+5 x-24$ is equal to zero. That is, solve the equation $x^{2}+5 x-24=0$.

$$
x^{2}+5 x-24=0 \Rightarrow(x+8)(x-3)=0 \Rightarrow x=-8, x=3
$$

Find when the nonlinear expression $x^{2}+5 x-24$ is undefined. The expression $x^{2}+5 x-24$ is defined for all real numbers x.

Step 2: Plot all the numbers found in Step 1 on the real number line.

Step 3: Use the real number line to identify the open intervals determined by the plotted numbers. Pick a test value for each open interval.

Interval	Test Value	Sign of $x^{2}+5 x-24=(x+8)(x-3)$
$(-\infty,-8)$	-9	$(-9+8)(-9-3)=(-)(-)=+$
$(-8,3)$	0	$(0+8)(0-3)=(+)(-)=-$
$(3, \infty)$	4	$(4+8)(4-3)=(+)(+)=+$

Answer: $(-8,3)$

3b. $\frac{8-t}{4 t+7} \leq 0$
Back to Problem 3.

NOTE: This is a two part problem. One part of the problem is to solve the nonlinear inequality $\frac{8-t}{4 t+7}<0$. The other part of the problem is to solve the equation $\frac{8-t}{4 t+7}=0$.

We will use the three step method to solve the nonlinear inequality $\frac{8-t}{4 t+7}<0$:

Step 1:

Find when the nonlinear expression $\frac{8-t}{4 t+7}$ is equal to zero. That is, solve the equation $\frac{8-t}{4 t+7}=0$. The fraction is equal to zero if and only if the numerator of the fraction is equal to zero.

That is, $\frac{8-t}{4 t+7}=0 \Rightarrow 8-t=0 \Rightarrow t=8$

Find when the nonlinear expression $\frac{8-t}{4 t+7}$ is undefined. The fraction is undefined if and only if the denominator of the fraction is equal to zero.

That is, $\frac{8-t}{4 t+7}$ undefined $\Rightarrow 4 t+7=0 \Rightarrow t=-\frac{7}{4}$

Step 2: Plot all the numbers found in Step 1 on the real number line.

$$
\begin{aligned}
& -\quad+\quad-\quad \text { Sign of } \frac{8-t}{4 t+7} \\
& \longleftrightarrow \begin{array}{ll}
\\
-\frac{7}{4} & 8
\end{array}
\end{aligned}
$$

Step 3: Use the real number line to identify the open intervals determined by the plotted numbers. Pick a test value for each open interval.

$$
\begin{array}{ccc}
\text { Interval } & \text { Test Value } & \text { Sign of } \frac{8-t}{4 t+7} \\
\left(-\infty,-\frac{7}{4}\right) & -2 & \frac{8+2}{-8+7}=\frac{(+)}{(-)}=- \\
\left(-\frac{7}{4}, 8\right) & 0 & \frac{8-0}{0+7}=\frac{(+)}{(+)}=+ \\
(8, \infty) & 9 & \frac{8-9}{36+7}=\frac{(-)}{(+)}=-
\end{array}
$$

Thus, the solution for the nonlinear inequality $\frac{8-t}{4 t+7}<0$ is the set of real numbers given by $\left(-\infty,-\frac{7}{4}\right) \cup(8, \infty)$. The solution for $\frac{8-t}{4 t+7}=0$ was found in Step 1 above. Thus, the solution for $\frac{8-t}{4 t+7}=0$ is the set $\{8\}$. Putting these two solutions together, we have that the solution for $\frac{8-t}{4 t+7} \leq 0$ is the set of real numbers $\left(-\infty,-\frac{7}{4}\right) \cup[8, \infty)$.

Answer: $\left(-\infty,-\frac{7}{4}\right) \cup[8, \infty)$

3c. $\frac{x+2}{x^{2}-8 x+16}>0$
Back to Problem 3.

Step 1: $\frac{x+2}{x^{2}-8 x+16}=0 \Rightarrow x+2=0 \Rightarrow x=-2$

$$
\begin{aligned}
& \frac{x+2}{x^{2}-8 x+16} \text { undefined } \Rightarrow x^{2}-8 x+16=0 \Rightarrow \\
& (x-4)^{2}=0 \Rightarrow x-4=0 \Rightarrow x=4
\end{aligned}
$$

Step 2: Plot all the numbers found in Step 1 on the real number line.

Step 3: Use the real number line to identify the open intervals determined by the plotted numbers. Pick a test value for each open interval.

$$
\begin{array}{lcl}
\text { Interval } & \text { Test Value } & \text { Sign of } \frac{x+2}{x^{2}-8 x+16}=\frac{x+2}{(x-4)^{2}} \\
(-\infty,-2) & -3 & \frac{-3+2}{(-3-4)^{2}}=\frac{(-)}{(+)}=- \\
(-2,4) & 0 & \frac{0+2}{(0-4)^{2}}=\frac{(+)}{(+)}=+ \\
(4, \infty) & 5 & \frac{5+2}{(5-4)^{2}}=\frac{(+)}{(+)}=+
\end{array}
$$

Answer: $(-2,4) \cup(4, \infty)$
Back to Problem 3.

4a. $\quad f(x)=\frac{x^{2}-4}{2 x^{2}-x-15}$
Back to Problem 4.
$f(x)=\frac{(x+2)(x-2)}{(x-3)(2 x+5)}$
$(x-3)(2 x+5)=0 \Rightarrow x=3, x=-\frac{5}{2}$

Answer: $x=-\frac{5}{2}, x=3$

4b. $\quad g(x)=\frac{3 x^{2}+2 x-8}{x+2}$ Back to Problem 4.

$$
g(x)=\frac{(x+2)(3 x-4)}{x+2}=3 x-4, x \neq-2
$$

The graph of the rational function g is the line $y=3 x-4$ with the point $(-2,-10)$ missing. The rational function g does not have any vertical asymptotes.

Answer: None

