Solutions for In-Class Problems 13 for Wednesday, March 14

These problems are from <u>Pre-Class Problems 13</u>.

- 1. Find a polynomial p of degree 4 with zeros (roots) $\frac{2}{3}$ of multiplicity 2 and -2i and 2i each of multiplicity 1.
- 2. Find a polynomial p of degree 3 with zeros (roots) $\frac{5}{3}$, 4 + $\sqrt{5}$ and 4 $\sqrt{5}$ each of multiplicity 1.
- 3. Solve the following inequalities.

a.
$$x^2 + 5x - 24 < 0$$
 b. $\frac{8-t}{4t+7} \le 0$ c. $\frac{x+2}{x^2 - 8x + 16} > 0$

4. Determine the vertical asymptotes (if any).

a.
$$f(x) = \frac{x^2 - 4}{2x^2 - x - 15}$$
 b. $g(x) = \frac{3x^2 + 2x - 8}{x + 2}$

SOLUTIONS:

1. Find a polynomial p of degree 4 with zeros (roots) $\frac{2}{3}$ of multiplicity 2 and -2i and 2i each of multiplicity 1. Back to Problem 1.

In order for $\frac{2}{3}$ to be a zero (root) of multiplicity 2, $(3x - 2)^2$ must be a factor of *p*.

In order for -2i to be a zero (root) of multiplicity 1, x + 2i must be a factor of p.

In order for 2i to be a zero (root) of multiplicity 1, x - 2i must be a factor of p.

Thus, $p(x) = a(3x - 2)^2(x + 2i)(x - 2i)$, where *a* is any nonzero real number.

We will use the special product formula $(a + b)(a - b) = a^2 - b^2$ for (x + 2i)(x - 2i). Thus, $(x + 2i)(x - 2i) = x^2 - 4i^2$. Since $i = \sqrt{-1}$, then $i^2 = -1$. Thus, $(x + 2i)(x - 2i) = x^2 - 4i^2 = x^2 + 4$.

We will use the special product formula $(a - b)^2 = a^2 - 2ab + b^2$ for $(3x - 2)^2$. Thus, $(3x - 2)^2 = 9x^2 - 12x + 4$.

Thus,
$$p(x) = a(3x - 2)^2(x + 2i)(x - 2i) =$$

 $a(x^2 + 4)(9x^2 - 12x + 4) = a(9x^4 - 12x^3 + 4x^2 + 36x^2 - 48x + 16)$
 $= a(9x^4 - 12x^3 + 40x^2 - 48x + 16)$

Thus, $p(x) = a(9x^4 - 12x^3 + 40x^2 - 48x + 16)$, where *a* is any nonzero real number.

If you pick *a* to equal one, then you get the polynomial $p(x) = 9x^4 - 12x^3 + 40x^2 - 48x + 16$

Answer: $p(x) = 9x^4 - 12x^3 + 40x^2 - 48x + 16$

Back to Problem 1.

2. Find a polynomial p of degree 3 with zeros (roots) $\frac{5}{3}$, $4 + \sqrt{5}$ and $4 - \sqrt{5}$ each of multiplicity 1. Back to Problem 2.

In order for $\frac{5}{3}$ to be a zero (root) of multiplicity 1, 3x - 5 must be a factor of *p*.

In order for $4 + \sqrt{5}$ to be a zero (root) of multiplicity 1, $x - (4 + \sqrt{5}) = x - 4 - \sqrt{5}$ must be a factor of *p*.

In order for $4 - \sqrt{5}$ to be a zero (root) of multiplicity 1, $x - (4 - \sqrt{5}) = x - 4 + \sqrt{5}$ must be a factor of *p*.

Thus, $p(x) = a(3x - 5)[x - 4 - \sqrt{5}][x - 4 + \sqrt{5}]$, where *a* is any nonzero real number.

We can easily find the product $[x - 4 - \sqrt{5}][x - 4 + \sqrt{5}]$ using the special product formulas $(a - b)(a + b) = a^2 - b^2$ and $(a - b)^2 = a^2 - 2ab + b^2$.

First, use the special product formula $(a - b)(a + b) = a^2 - b^2$ with *a* being x - 4 and *b* being $\sqrt{5}$ and then use the second special product formula to find $(x - 4)^2$. Thus,

$$[x - 4 - \sqrt{5}][x - 4 + \sqrt{5}] = (x - 4)^{2} - (\sqrt{5})^{2} = x^{2} - 8x + 16 - 5 = x^{2} - 8x + 11$$

Thus, $p(x) = a(3x - 5)[x - 4 - \sqrt{5}][x - 4 + \sqrt{5}] = a(3x - 5)(x^2 - 8x + 11)$, where *a* is any nonzero real number.

Now, multiplying $(3x - 5)(x^2 - 8x + 11)$, we have that

$$(3x - 5)(x^{2} - 8x + 11) = 3x^{3} - 24x^{2} + 33x - 5x^{2} + 40x - 55 =$$
$$3x^{3} - 29x^{2} + 73x - 55.$$

Thus, $p(x) = a(3x - 5)(x^2 - 8x + 11) = 3x^3 - 29x^2 + 73x - 55$, where *a* is any nonzero real number.

If you pick *a* to equal one, then you get the polynomial $p(x) = 3x^3 - 29x^2 + 73x - 55$.

Answer: $p(x) = 3x^3 - 29x^2 + 73x - 55$ Back to Problem 2.

3a.
$$x^2 + 5x - 24 < 0$$
 Back to Problem 3.

Step 1:

Find when the nonlinear expression $x^2 + 5x - 24$ is equal to zero. That is, solve the equation $x^2 + 5x - 24 = 0$.

$$x^{2} + 5x - 24 = 0 \implies (x + 8)(x - 3) = 0 \implies x = -8, x = 3$$

Find when the nonlinear expression $x^2 + 5x - 24$ is undefined. The expression $x^2 + 5x - 24$ is defined for all real numbers *x*.

Step 2: Plot all the numbers found in Step 1 on the real number line.

Step 3: Use the real number line to identify the open intervals determined by the plotted numbers. Pick a test value for each open interval.

Interval	Test Value	Sign of $x^2 + 5x - 24 = (x+8)(x-3)$
$(-\infty, -8)$	- 9	(-9+8)(-9-3) = (-)(-) = +
(-8,3)	0	(0+8)(0-3) = (+)(-) = -
$(3,\infty)$	4	(4+8)(4-3) = (+)(+) = +

Answer: (−8, 3)

3b.
$$\frac{8-t}{4t+7} \le 0$$
 Back to Problem 3.

NOTE: This is a **two** part problem. One part of the problem is to solve the nonlinear inequality $\frac{8-t}{4t+7} < 0$. The other part of the problem is to solve the equation $\frac{8-t}{4t+7} = 0$.

We will use the three step method to solve the nonlinear inequality $\frac{8-t}{4t+7} < 0$:

Step 1:

Find when the nonlinear expression $\frac{8-t}{4t+7}$ is equal to zero. That is, solve the equation $\frac{8-t}{4t+7} = 0$. The fraction is equal to zero if and only if the numerator of the fraction is equal to zero.

That is,
$$\frac{8-t}{4t+7} = 0 \implies 8-t=0 \implies t=8$$

Find when the nonlinear expression $\frac{8-t}{4t+7}$ is undefined. The fraction is undefined if and only if the denominator of the fraction is equal to zero.

That is,
$$\frac{8-t}{4t+7}$$
 undefined $\Rightarrow 4t+7=0 \Rightarrow t=-\frac{7}{4}$

Step 2: Plot all the numbers found in Step 1 on the real number line.

Step 3: Use the real number line to identify the open intervals determined by the plotted numbers. Pick a test value for each open interval.

Thus, the solution for the nonlinear inequality $\frac{8-t}{4t+7} < 0$ is the set of real numbers given by $\left(-\infty, -\frac{7}{4}\right) \cup (8, \infty)$. The solution for $\frac{8-t}{4t+7} = 0$ was found in Step 1 above. Thus, the solution for $\frac{8-t}{4t+7} = 0$ is the set $\{8\}$. Putting these two solutions together, we have that the solution for $\frac{8-t}{4t+7} \le 0$ is the set of real numbers $\left(-\infty, -\frac{7}{4}\right) \cup [8, \infty)$.

Answer:
$$\left(-\infty, -\frac{7}{4}\right) \cup [8, \infty)$$

3c. $\frac{x+2}{x^2-8x+16} > 0$ Back to Problem 3.

Step 1:
$$\frac{x+2}{x^2-8x+16} = 0 \implies x+2 = 0 \implies x = -2$$
$$\frac{x+2}{x^2-8x+16} \text{ undefined } \implies x^2-8x+16 = 0 \implies$$
$$(x-4)^2 = 0 \implies x-4 = 0 \implies x = 4$$

Step 2: Plot all the numbers found in Step 1 on the real number line.

$$- + +$$
Sign of $\frac{x+2}{x^2-8x+16}$

$$-2 \quad 4$$

Step 3: Use the real number line to identify the open intervals determined by the plotted numbers. Pick a test value for each open interval.

Interval	Test Value	Sign of $\frac{x+2}{x^2-8x+16} = \frac{x+2}{(x-4)^2}$
$(-\infty, -2)$	- 3	$\frac{-3+2}{(-3-4)^2} = \frac{(-)}{(+)} = -$
(-2,4)	0	$\frac{0+2}{(0-4)^2} = \frac{(+)}{(+)} = +$
$(4,\infty)$	5	$\frac{5+2}{(5-4)^2} = \frac{(+)}{(+)} = +$

Answer: $(-2, 4) \cup (4, \infty)$

Back to Problem 3.

4a.
$$f(x) = \frac{x^2 - 4}{2x^2 - x - 15}$$
 Back to Problem 4.

$$f(x) = \frac{(x+2)(x-2)}{(x-3)(2x+5)}$$

$$(x - 3)(2x + 5) = 0 \implies x = 3, x = -\frac{5}{2}$$

Answer: $x = -\frac{5}{2}, x = 3$

4b.
$$g(x) = \frac{3x^2 + 2x - 8}{x + 2}$$
 Back to Problem 4.

$$g(x) = \frac{(x+2)(3x-4)}{x+2} = 3x-4, \ x \neq -2$$

The graph of the rational function g is the line y = 3x - 4 with the point (-2, -10) missing. The rational function g does not have any vertical asymptotes.

Answer: None