Solutions for In-Class Problems 12 for Monday, March 12

These problems are from <u>Pre-Class Problems 12</u>.

You can go to the solution for each problem by clicking on the problem letter or problem number.

1. Use synthetic division to divide the following polynomials.

a.
$$(2x^3 - 7x^2 + 15x - 20) \div (x + 3)$$
 b. $\frac{x^3 - 125}{x - 5}$

- 2. If $f(x) = x^4 + 6x^2 9x + 12$, then use the Remainder Theorem to find the following polynomial values.
 - a. f(-5) b. f(8) c. f(4i)
- 3. If $g(x) = 6x^4 11x^3 53x^2 + 108x 36$, then use the Remainder Theorem to determine if the given number is a zero (root) of the polynomial.
 - a. -3 b. 3 c. $\frac{3}{2}$
- 4. If $h(x) = 3x^4 + 8x^3 + 44x 80$, then use the Factor Theorem to determine if the given binomial is a factor of the polynomial.

a.
$$x - 2$$
 b. $x + 4$ c. $x - \frac{1}{3}$

5. Find the zeros (roots) of the following polynomials. Also, give a factorization for the polynomial.

a.
$$f(x) = 3x^4 - 7x^3 - 20x^2 + 30x + 36$$

b.
$$g(x) = 2x^4 - 8x^3 + 15x^2 - 28x + 28$$

SOLUTIONS:

1a.
$$(2x^3 - 7x^2 + 15x - 20) \neq (x + 3)$$
 Back to Problem 1.

$$\frac{2 -7 15 -20 | -3}{-6 39 -162}$$
Answer: $\frac{2x^3 - 7x^2 + 15x - 20}{x + 3} = 2x^2 - 13x + 54 - \frac{182}{x + 3}$
1b. $\frac{x^3 - 125}{x - 5}$ Back to Problem 1.

$$\frac{1 \ 0 \ 0 \ -125 | 5}{1 \ 5 \ 25 \ 0}$$
Back to Problem 1.

$$\frac{1 \ 0 \ 0 \ -125 | 5}{1 \ 5 \ 25 \ 0}$$
Back to Problem 1.

$$\frac{1 \ 0 \ 0 \ -125 | 5}{x - 5} = x^2 + 5x + 25$$
2a. $f(-5)$
Back to Problem 2.

$$\frac{1 \ 0 \ 6 \ -9 \ 12 | -5}{1 \ -5 \ 31 \ -164 \ 832}$$

2b.	f(8)					Back to Problem 2.
	1	0 8			12 4408		
	1	8	70	551	4420		
	Ansv	wer: 44	20				
2c.	<i>f</i> (4	i)					Back to Problem 2.
	1		6			12 - 36i + 160	<u>4i</u>
	1					$\frac{-36i + 100}{172 - 36i}$	
	Ansv	wer: 17	72 – 36 <i>i</i>				
3a.							
	6	-11	- 53	1	.08 -	- 36 - 3	

				-	
_	-18	87	-102	-18	
6	- 29	34	6	- 54	

 $g\left(-3\right) = -54$

Back to Problem 3.

3b.

6	-11	- 53	108	- 36	3
	18	21	- 96	36	
6	7	- 32	12	0	

g(3)=0

Back to Problem 3.

3c.

6	-11	- 53	108	- 36	$\frac{3}{2}$
	9	- 3	- 84	36	
6	- 2	- 56	24	0	

$$g\left(\frac{3}{2}\right) = 0$$

Answer: $\frac{3}{2}$ is a zero (root) of the polynomial Back to <u>Problem 3</u>.

4a. x - 2 Back to Problem 4.

x - 2 is a factor of the polynomial h if and only if h(2) = 0.

3	8	0	44	- 80 2
	6	28	56	200
3	14	28	100	120
h(2	2) = 120			

Answer: x - 2 is not a factor of the polynomial

4b. x + 4

Back to Problem 4.

x + 4 is a factor of the polynomial h if and only if h(-4) = 0.

3	8	0	44	- 80	- 4
	-12	16	- 64	80	
3	- 4	16	- 20	0	

h(-4) = 0

Answer: x + 4 is a factor of the polynomial

4c. $x - \frac{1}{3}$ Back to Problem 4.

$$x - \frac{1}{3}$$
 is a factor of the polynomial *h* if and only if $h\left(\frac{1}{3}\right) = 0$.

$$h\left(\frac{1}{3}\right) = -65$$

Answer: $x = \frac{1}{3}$ is not a factor of the polynomial

5a.
$$f(x) = 3x^4 - 7x^3 - 20x^2 + 30x + 36$$
 Back to Problem 5.

Factors of 36: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 18 , ± 36

Factors of 3: 1, 3

Using 1 as a denominator: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 18 , ± 36

Using 3 as a denominator: $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{4}{3}$

Possible rational zeros (roots): $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, ± 1 , $\pm \frac{4}{3}$, ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 18 , ± 36

Trying 1:

$$\frac{\begin{array}{c} \text{Coeff of } 3x^4 - 7x^3 - 20x^2 + 30x + 36 \\ \hline 3 & -7 & -20 & 30 & 36 \\ \hline 3 & -4 & -24 & 6 \\ \hline 3 & -4 & -24 & 6 & 42 \\ \hline \end{array}}$$

NOTE: $f(1) = 42 \neq 0 \implies x - 1$ is not a factor of the polynomial f and 1 is not a zero (root) of f.

NOTE: $f(-1) = -4 \neq 0 \implies x + 1$ is not a factor of f and -1 is not a zero (root) of f.

			$3x^4 - 7x^3 -$			1 2
	3	- 7	- 20	30	36	
Trying 2:		6	- 2	- 44	- 28	
	3	-1	- 22	-14	8	

NOTE: $f(2) = 8 \neq 0 \implies x - 2$ is not a factor of the polynomial f and 2 is not a zero (root) of f.

				$20x^2 + 30x +$		2
	3	- 7	- 20	30	36	
Trying -2 :		- 6	26	-12	- 36	
	3	-13	6	18	0	

NOTE: $f(-2) = 0 \implies x + 2$ is a factor of the polynomial f and -2 is a zero (root) of f.

NOTE: The third row in the synthetic division gives us the coefficients of the other factor starting with x^3 . Thus, the other factor is $3x^3 - 13x^2 + 6x + 18$.

Thus, we have that $f(x) = 3x^4 - 7x^3 - 20x^2 + 30x + 36 =$

$$(x + 2)(3x^3 - 13x^2 + 6x + 18).$$

Note that the remaining zeros of the polynomial f must also be zeros (roots) of the quotient polynomial $q(x) = 3x^3 - 13x^2 + 6x + 18$. We will use this polynomial to find the remaining zeros (roots) of the polynomial f, including another zero (root) of -2.

Trying - 2 again:

$$\frac{\begin{array}{c} Coeff \ of \ 3x^3 - 13x^2 + 6x + 18}{3 - 13 \ 6 \ 18} \\ - 6 \ 38 \ - 88 \\ \hline 3 \ - 19 \ 44 \ - 70 \end{array}} | - 2$$

NOTE: $q(-2) = -70 \neq 0 \implies x + 2$ is not a factor of the quotient polynomial q. Thus, the factor x + 2 only occurs once in the factorization of the polynomial f and -2 is a zero (root) of multiplicity one for the polynomial f.

NOTE: By the Bound Theorem, -2 is a lower bound for the negative zeros (roots) of the quotient polynomial $q(x) = 3x^3 - 13x^2 + 6x + 18$ since we alternate from **positive** 3 to **negative** 19 to **positive** 44 to **negative** 70 in the third row of the synthetic division. Thus, the remaining negative numbers in our list of possible rational zeros (roots) will not be zeros (roots) of the polynomial q nor f.

	C	Coeff of $3x^3$	$-13x^{2} + 6x$	+ 18	2
	3	-13	6	18	5
Trying 3:		9	-12	- 18	
	3	- 4	-б	0	

NOTE: $q(3) = 0 \implies x - 3$ is a factor of the quotient polynomial q and the polynomial f. Thus, 3 is a zero (root) of q and f.

Thus,
$$q(x) = 3x^3 - 13x^2 + 6x + 18 = (x - 3)(3x^2 - 4x - 6)$$

Thus,
$$f(x) = 3x^4 - 7x^3 - 20x^2 + 30x + 36 =$$

 $(x + 2)(3x^3 - 13x^2 + 6x + 18) = (x + 2)(x - 3)(3x^2 - 4x - 6)$

Now, we can try to find a factorization for the quadratic expression $3x^2 - 4x - 6$. However, it does not factor.

Thus, we have that $3x^4 - 7x^3 - 20x^2 + 30x + 36 = (x + 2)(x - 3)(3x^2 - 4x - 6).$

Thus,
$$3x^4 - 7x^3 - 20x^2 + 30x + 36 = 0 \Rightarrow$$

 $(x + 2)(x - 3)(3x^2 - 4x - 6) = 0 \Rightarrow x = -2, x = 3,$
 $3x^2 - 4x - 6 = 0$

We will need to use the Quadratic Formula to solve $3x^2 - 4x - 6 = 0$.

Thus,
$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{16 - 4(3)(-6)}}{6} =$$

$$\frac{4 \pm \sqrt{4(4 + 18)}}{6} = \frac{4 \pm 2\sqrt{22}}{6} = \frac{2 \pm \sqrt{22}}{3}$$

Answer: Zeros (Roots):
$$-2, 3, \frac{2 \pm \sqrt{22}}{3}$$

Factorization:
$$(x + 2)(x - 3)(3x^2 - 4x - 6)$$

5b.
$$g(x) = 2x^4 - 8x^3 + 15x^2 - 28x + 28$$

Back to Problem 5.

Factors of 28: ± 1 , ± 2 , ± 4 , ± 7 , ± 14 , ± 28

Factors of 2: 1, 2

Using 1 as a denominator: ± 1 , ± 2 , ± 4 , ± 7 , ± 14 , ± 28

Using 2 as a denominator: $\pm \frac{1}{2}$, $\pm \frac{7}{2}$ Possible rational zeros (roots): $\pm \frac{1}{2}$, ± 1 , ± 2 , $\pm \frac{7}{2}$, ± 4 , ± 7 , ± 14 , ± 28

		Coeff of 2x	$x^4 - 8x^3 + 3$	$15x^2 - 28x$	+ 28	1
	$\overline{2}$	- 8	15	- 28	28	
Trying 1:		2	- 6	9	- 19	
	2	- 6	9	- 19	9	

NOTE: $g(1) = 9 \neq 0 \implies x - 1$ is not a factor of the polynomial g and 1 is not a zero (root) of g.

		Coeff of $2x^2$	$x^4 - 8x^3 + 13$	$5x^2 - 28x +$	28	1
	$\overline{2}$	- 8	15	- 28	28	<u> </u>
Trying -1 :		- 2	10	- 25	53	
	2	-10	25	- 53	81	

NOTE: $g(-1) = 81 \neq 0 \implies x + 1$ is not a factor of the polynomial g and -1 is not a zero (root) of g.

NOTE: By the Bound Theorem, -1 is a lower bound for the negative zeros (roots) of the polynomial *g* since we alternate from **positive** 2 to **negative** 10 to **positive** 25 to **negative** 53 to **positive** 81 in the third row of the synthetic

division. Thus, the remaining negative numbers in our list of possible rational zeros (roots) will not be zeros (roots) of the polynomial g.

Trying 2:

$$\frac{\begin{array}{c} \text{Coeff of } 2x^4 - 8x^3 + 15x^2 - 28x + 28}{2 & -8 & 15 & -28 & 28} \\ 4 & -8 & 14 & -28 \\ 2 & -4 & 7 & -14 & 0 \end{array}} \\
\begin{array}{c} 2 \\ \end{array}$$

NOTE: $g(2) = 0 \implies x - 2$ is a factor of the polynomial g and 2 is a zero (root) of g.

The third row in the synthetic division gives us the coefficients of the other factor starting with x^3 . Thus, the other factor is $2x^3 - 4x^2 + 7x - 14$.

Thus, we have that $g(x) = 2x^4 - 8x^3 + 15x^2 - 28x + 28 = (x-2)(2x^3 - 4x^2 + 7x - 14)$.

Note that the remaining zeros of the polynomial g must also be zeros (roots) of the quotient polynomial $q(x) = 2x^3 - 4x^2 + 7x - 14$. We will use this polynomial to find the remaining zeros (roots) of the polynomial g, including another zero (root) of 2.

	Ca	-4	$-4x^2 + 7$	x - 14	12
	$\overline{2}$	- 4	7	-14	
Trying 2:		4	0	14	
	2	0	7	0	

NOTE: $q(2) = 0 \implies x - 2$ is a factor of the quotient polynomial q and is a second factor of the polynomial g. Thus, the factor x - 2 occurs twice in the factorization of the polynomial g and 2 is a zero (root) of multiplicity two for the polynomial g.

Thus,
$$q(x) = 2x^3 - 4x^2 + 7x - 14 = (x - 2)(2x^2 + 7)$$

Thus,
$$g(x) = 2x^4 - 8x^3 + 15x^2 - 28x + 28 =$$

 $(x - 2)(2x^3 - 4x^2 + 7x - 14) = (x - 2)(x - 2)(2x^2 + 7) =$
 $(x - 2)^2(2x^2 + 7).$

The quadratic expression $2x^2 + 7$ does not factor.

Thus, we have that $2x^4 - 8x^3 + 15x^2 - 28x + 28 = (x - 2)^2(2x^2 + 7)$.

Thus, $2x^4 - 8x^3 + 15x^2 - 28x + 28 = 0 \implies$ $(x - 2)^2(2x^2 + 7) = 0 \implies (x - 2)^2 = 0, \ 2x^2 + 7 = 0.$

$$(x-2)^{2} = 0 \implies x-2 = 0 \implies x = 2$$
$$2x^{2} + 7 = 0 \implies 2x^{2} = -7 \implies x^{2} = -\frac{7}{2} \implies x = \pm i\sqrt{\frac{7}{2}} = \pm \frac{\sqrt{14}}{2}i$$

Answer: Zeros (Roots): 2, $\pm \frac{\sqrt{14}}{2}i$

Back to Problem 5.

Factorization: $(x - 2)^2(2x^2 + 7)$