1 PART I: Physical Applications

1. A thin rod from $x=0$ to $x=L$ has density $\rho(x)=x$.
a) What is the mass of the rod?
b) If the rod has mass 40, what is L?
2. A thin rod from $x=0$ to $x=10$ has density

$$
\rho(x)=\left\{\begin{array}{l}
4,0 \leq x \leq a \\
4 x^{3}, a \leq x \leq 10
\end{array}\right.
$$

a) Find the mass of the rod in terms of a.
b) What value of a ensures that the mass of the portion of the rod left of $x=a$ has the same mass as the portion of the rod right of a
3. A spring with spring constant k requires $80 N$ to stretch $2 m$.
a) How much work is required to stretch the spring?
b) How much work is required to stretch it an additional $2 m$?
c) Suppose the spring (which is now 4 meters from equilibrium position) is stretched an additional a meters. What should a be so that the total work stretching the spring to $4+a \mathrm{~m}$ is 500 J ?
4. A cylindrical tank has base radius 5 m and height 20 m . The tank is filled up to a hight b with liquid $X\left(\rho=5000 \mathrm{~kg} / \mathrm{m}^{3}\right)$ and then filled the rest of the way with liquid $Y\left(\rho=2000 \mathrm{~kg} / \mathrm{m}^{3}\right)$. Assuming that the liquids do not mix, find a value for b so the work required to pump liquid X from the tank is equal to the amount of work required to pump liquid Y from the tank.

2 PART II: u-substitutions

1. $\int 3 x^{2} \sin \left(4 x^{3}\right) d x$
2. $\int_{0}^{1} x^{2} e^{4 x^{3}+1} d x$
3. $\int \frac{4 x+6}{3 x^{2}+9 x} d x$
4. $\int 5 x^{8}\left(14 x^{9}-1\right)^{6} d x$
5. $\int_{\pi / 4}^{\pi / 2} \frac{\cos (\sqrt{x})}{2 \sqrt{x}} d x$
6. $\int_{0}^{2} \frac{1}{2 x+4} d x$
7. $\int_{\sqrt{\pi / 3}}^{\sqrt{\pi / 6}} 2 x \sec \left(4 x^{2}\right) \tan \left(4 x^{2}\right) d x$

3 PART II: Various Integrals

1. $\int x\left(x^{3}+1\right)^{2} d x$
2. $\int x^{2}\left(x^{3}+1\right)^{5} d x$
3. $\int \frac{5 x-5 x^{2}}{3 x^{3}} d x$
4. $\int \frac{1}{x \ln x} d x$
5. $\int \frac{2 x^{3}-4 x^{2}+8 x-1}{2 x+1} d x$
6. $\int \frac{3 x+4 \sqrt{x}}{9 x^{2}+16 \sqrt{x^{3}}} d x$
7. $\int 14 e^{x} \sec ^{2}\left(e^{x}\right) d x$

4 PART III: Integration by parts

1. $\int 4 x \cos 5 x d x$
2. $\int x \ln x d x$
3. $\int_{0}^{\pi} e^{2 x} \cos 4 x d x$
4. $\int \arcsin x d x$
5. $\int(\ln x)^{2} d x$
6. $\int x^{2} \sin 4 x d x$
7. $\int_{0}^{\pi} \sin 2 x \cos 3 x d x$
