## 1 PART I: Areas

1. Find the area of the region bounded by $y=4 x, y=-4$, and $y=12-2 x$.
2. Find the area bounded by $y=18-3 x^{2}$ and $y=x^{2}+2$.
3. Set up an integral which gives the area of the region given by $y=\frac{1}{3} x^{2}+1, y=\frac{1}{2} x+\frac{5}{2}, y=3$.

## 2 PART II: Volumes by slicing

4. Find the volume of a solid, whose base is a region in the $x y$ plane bounded by $y=9-9 x^{2}$, $y=9+9 x$, and $y=0$.

- When cross sections through it are squares perpendicular to $x$ axis
- When cross sections through it are squares perpendicular to y axis

5. The base of a solid is the region in the $x y$ plane bounded by the curves $y=9-9 x^{2}, y=9+9 x$, and $y=0$. Find the volume if the cross sections are given by equilateral triangles.

## 3 PART III: Volumes by revolution

6. The region bounded by $y=10-3 x^{2}, x=0$ and $x=1$ is revolved about the following axes. In each case, set up an integral for the volume of the resulting object and calculate the volume.

- $x=0$
- $y=0$
- $x=2$
- $y=-5$

7. The region bounded by $y=3 x-2, y=\sqrt{x}$ and $y=0$ is revolved about the following axes. In each case, set up an integral for the volume of the resulting object and calculate the volume.

- $x=0$
- $y=0$
- $y=10$
- $x=-1$

