1 PART I: Areas

1. Find the area of the region bounded by y = 4x, y = -4, and y = 12 - 2x.

2. Find the area bounded by $y = 18 - 3x^2$ and $y = x^2 + 2$.

3. Set up an integral which gives the area of the region given by $y = \frac{1}{3}x^2 + 1$, $y = \frac{1}{2}x + \frac{5}{2}$, y = 3.

2 PART II: Volumes by slicing

4. Find the volume of a solid, whose base is a region in the xy plane bounded by $y = 9 - 9x^2$, y = 9 + 9x, and y = 0.

• When cross sections through it are squares perpendicular to x axis

• When cross sections through it are squares perpendicular to y axis

5. The base of a solid is the region in the xy plane bounded by the curves $y = 9 - 9x^2$, y = 9 + 9x, and y = 0. Find the volume if the cross sections are given by equilateral triangles.

3 PART III: Volumes by revolution

6. The region bounded by $y = 10 - 3x^2$, x = 0 and x = 1 is revolved about the following axes. In each case, set up an integral for the volume of the resulting object and calculate the volume.

- x = 0
- y = 0
- x = 2
- y = -5

7. The region bounded by y = 3x - 2, $y = \sqrt{x}$ and y = 0 is revolved about the following axes. In each case, set up an integral for the volume of the resulting object and calculate the volume.

- x = 0
- y = 0
- *y* = 10
- x = -1