Meek of Fib \$ / Part 1
Qi is ther an lasies may of findegties blune?
$\frac{\text { Cylindrical shells: }}{\text { aymbrachl ratas }}$
DDAA: SCopplquT of THE SUL 10!
(Insterd \& slicing)
Ex] $R$ - Bdd dare byfled $\frac{1}{x}$, bulaw $x$ axā oun $[1,3]$ crevoluig $R$ coroud y yaxis: $\rightarrow$


Cut the Shell torectage:
$n\{1$

$$
V=2 \pi \int_{\frac{3}{3}(x)^{r} \cdot\left(\frac{1}{x}\right)^{f(x)} d x=\left.2 \pi x\right|^{3}=4 \pi}^{=4 \pi}
$$

$2 \pi \pi_{r}$
Previsus queston: $x$


With Suall nothod

$$
\begin{aligned}
& \left.V=2 \pi \int_{0}^{1} t h e^{h} \cdot\left(10-3 x^{2}\right)\right](2-x) d x \\
& =2 \pi \cdot \int_{0}^{1}\left(20-10 x-6 x^{2}+3 x^{3}\right) d x=\frac{89 \pi}{2}
\end{aligned}
$$

IDPA: Uxthis mothod uner "vertical"
$8 x$ veetayles are paralld to aris ofvotation?
Problen 6 oogun, $y=10-3 x^{2}, x=0, x=1$

$x=0 \quad a x_{n}$

I'll pichmy vecticiples $/ c$ twe is ulgove type if I doso (stherwe there will be 2 types)
Now my xetange (aluchri viticol)


$$
\begin{aligned}
& V=2 H \int^{x=1} x \cdot\left(10-3 x^{2}\right) d x \\
& x=0=\frac{17 \pi}{2}
\end{aligned}
$$

Fx: R: $\quad f^{b d d}(x)=2 x-x_{1}^{2} \quad$ belon $x$ ares, ou $[12]$
Resole coond ay axis, ford volue


$$
\begin{aligned}
V & =2 \pi(x) \cdot\left(2 x-x^{2}\right) d x=2 \pi \cdot \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x \\
0 & =\left.2 \pi \cdot\left(\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{2}=2 \pi\left[\frac{16}{3}-\frac{16}{4}\right]=\frac{8 \pi}{3}
\end{aligned}
$$

Ex: A: Regan bodd log $g(y)=2 \sqrt{y}$, yoxas for $y \in[0,4]$. Bendre anoud $x$ asien, fruel



$$
\begin{aligned}
V=2 \pi \int_{y=0}^{y-4}(2 \sqrt{y}) \cdot y d y & =\int_{0}^{4} 2 y^{\frac{3}{2}} d y=\left.\frac{2 \pi y^{5 / 2}}{5 / 2}\right|_{0} ^{4} \\
& =\frac{8 \pi}{5}\left(2^{5}\right)=\frac{256}{5} T
\end{aligned}
$$

