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In applied control theory, differential flatness is an important tool for the analysis of linear
differential systems. See, for example, [8, 6] for definitions and [9, 7] for applications of this concept.
In brief, this system property is characterised by the existence of a flat output, that allows a
parameterisation of the states and inputs of a system using linear combinations of derivatives of
the flat output.

The concept of π-flatness is an extension to linear control systems with delays. A π-flat output
allows to parameterise the states and inputs of the considered system using linear combinations of
the derivatives of this output and, additionally, predictions, which are characterised by a prediction
operator π. Of the several proposed extensions—see, for example, [11, 13, 10] and see also [14, 3]
for a different approach—we have have chosen to elaborate on the method that is discussed in [10]
which is based on the concept of so-called hyper-regularity of matrices.

We model linear time-varying control systems with delays by Ore polynomials in a differential
operator d

dt and a delay (shift) operator δ with coefficients originating from a field K of time-varying
functions—cf [12, 5, 4] for a definition of (iterated) Ore polynomial rings. Linear time-varying
systems with delays are then of the form

Ax = Bu

with A ∈ K[δ, d
dt ]

n×n
and B ∈ K[δ, d

dt ]
n×m

being matrices of differential and delay operators.
The system is π-flat for π ∈ K[δ] if there are matrices P ∈ K[δ, d

dt ]
m×n

, Q ∈ K[δ, d
dt ]

n×m
and

R ∈ K[δ, d
dt ]

m×m
such that

y = π−1Px, x = π−1Qy and u = π−1Ry

where y is the flat output.
As in [10] we localise the ring K[δ, d

dt ] at the non-zero polynomials in δ. The resulting ring
K(δ)[ ddt ] can then be regarded as Ore polynomial ring in the single variable d

dt . In [10], it was
proposed to check the hyper-regularity of matrices of operators by computation of the Smith-
Jacobson normal form which may be computed using an algorithm sketched in that paper. In our
contribution, we give a different characterisation of hyper-regular matrices that allows us to use the
efficient method of row- and column-reduction (cf, for example, [2]) in order to check the considered
matrices for hyper-regularity. This yields an algorithm which has been implemented in a MapleTM

toolbox by one of the authors that can be downloaded at [1].
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