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Abstract

The scattering matrix that describes the scattering of a quantum
mechanical particle in R™ by a short range potential in the presence
of a constant electric field is considered. The scattering matrix is
shown to have a meromorphic continuation in the energy variable to
the whole complex plane as a bounded operator on L2(R"~!). The
constant electric field, which is referred to as the “Stark effect” in this
context, means that “short range” includes the physically interesting
case of the Coulomb potential (but 7 > 3 is required here.) In addition
it is shown that the resolvent operator has a meromorphic continuation
across the real axis in an appropriate context. The scattering matrix
studied here is constructed using Isozaki, Kitada and Yajima's “time
independent modifiers.”

1 Introduction.

It is shown here that the scattering matrix has a meromorphic extension in
the energy variable in the following physical context. A single (nonrelativis-
tic) quantum particle is scattered by a potential in the presence of a constant
electric field (“Stark effect”). The potentials V' must be short range but, be-
cause of the constant field that includes, for example the Coulomb potential,
V(z) = C/|z| where C is a real constant. (However the potential must not
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be too locally singular and so the results below apply to the Coulomb po-
tential only when the space dimension n is at least 3). The results here were
over-viewed in [13].

The Schrodinger operators operators that model the above physical ex-
periment are introduced as follows. Let V' be the potential and F' > 0 be the
(constant) field strength. Assuming the field acts in the —e; direction where
e; = (1,0,...,0) € R", the Schrédinger operators are (after convenient nor-
malizations)

Hy=—A+Fxy and H=Hy+V

where A = 0%/0x? + ...+ 0%/0x2. The precise assumptions on the potential
V are given in the Hypotheses below but V' (z) is short range in the sense that
the usual “Mgller wave operators” exist and are complete. However in this
paper we work instead with the two Hilbert space wave operators, or “time
independent modifiers” those of Isozaki, Kitada and Yajima [17, 18, 22, 23]

WF = s-lim e jemitHo (1.1)
t—to0

where J is a bounded operator on L*(R") to be chosen appropriately and
“s-lim” means the limit is taken in the strong topology. (WjE exist and are
complete [32], assuming the Hypotheses below.) Of course the Mgller wave
operators, referred to above, are just WJjE when J is the identity operator.
This reliance on W7 is also the starting point for Gérard and Martinez [9)]
who established the existence of a meromorphic continuation of the scatter-
ing matrix in the absence of the Stark effect (F' = 0). Indeed [9] was the
inspiration for the present work; however Gérard and Martinez are able to
treat long range potentials unlike here. Isozaki and Kitada [19] were the first
to use W5 to study the scattering matrix particularly smoothness of the
scattering amplitude although they didn’t address the question of meromor-
phic continuation. Regrettably the relationship between WJjE and the Mgller
wave operators (when both exist) is not obvious but see [21] and [8, §4.9]
when F' = 0 and [33] for F' # 0. This work concerns only W3 and the corre-
sponding scattering operator S = (W;)*W ; the Mgller wave operators will
be the object of a future study.

Agmon and Klein [2] have also established the existence of a meromorphic
extension for the scattering matrix and without reference to the two Hilbert
space wave operators. Indeed they consider very long range potentials but
the potentials are spherically symmetric (and F' = 0). It is intriguing that
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in the two works treating long range potentials, [2] and [9], the continuation
of the scattering matrix is, as operators on certain spaces which are Gevrey
spaces where the two works overlap. Which Gevrey spaces are appropriate
depends on the rate of decay of the potential. Since the potentials here are
short range, there is no question about where to extend the matrix: the
continuation is,as a bounded operator on L?(R""!). The author’s attempt
to extend the results here to general long range potentials (like those in [32])
was problematic.

In the “Stark effect” case (F # 0) Yajima [34] has established the exis-
tence of a meromorphic continuation of the scattering matrix (again without
reference to the two Hilbert space wave operators). He considers potentials
which decrease exponentially fast in the field direction (—e;) (corresponding
roughly to V4 = 0 below). Several of the arguments below are adaptations
of Yajima’s to the present context.

Kvitsinsky and Kostrykin [26] show that the scattering matrix has a mero-
morphic extension in the case V' is the Coulomb potential and n = 3. They
use Jost functions and parabolic coordinates.

In the case of N-body scattering and F' = 0 the existence of a meromor-
phic extension of the scattering matrix has been treated by several authors:
see Hagedorn [10, 1979], Sigal [31, 1986], for example in the short range case
and Bommier [5, 1994] in the long range case.

Introduce now the assumptions on the potential V. The following nota-
tion will be convenient when discussing exponential decay in the direction of
the field: for g > 0 define

hu(w1) = € X(—00,0) (1) + X(0,00) (Z1) (1.2)
and X(—c,0) is in C*(R)

~ (1 ifa < —1)2
X(—o00)(T1) = { 0 ifay>1/2 and (1.3)

X(0,000(#1) = X(=o00,0)(—21) = 1 = X(=00,0)(21)-

In addition C*°(2) denotes the set of all infinitely differentiable functions
defined on Q C R™; and {x1) = (1 + 2%)'/2.

Hypotheses: V = V4 + V. where Va(x) is C°(R"), real valued and has
an analytic extension to the cone

{z € C" : Rx; < —Ry, [Sz| < py|Rz1|} (1.4)
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for some Ry > 0 and py > 0, and for some positive constants C and €y

[Valz)] < C{Rzp)™V (1.5)
lim Vu(z) = 0.
|z|—o00
The other term is V, = h,, (z1)Vy where Vi is symmetric and Hy-compact
and commutes with any operator which is multiplication by a function of x,
and py > 0.

The Hypotheses will be assumed throughout; for the main results the
additional assumption €, > 1/2, which makes V' short range with respect
to Hy, will be required. However for the construction of the operator .J,
in §2, 3 and 4, the assumption €, > 0 is adequate so that V may be long
range. The Hypotheses imply that V' is Hy-compact and this assures that H
is self adjoint. For an introduction to Schodinger operators with Stark effect,
including examples of Hy-compactness, see [28].

Example: The potentials V(z) = C{x)~ satisfy the Hypotheses if C
is a real constant and 0 < ey. Also the Coulomb potential V(z) = C/|z|
satisfies the Hypothesis provided n > 3 (to assure Hp-compactness).

Remark: The assumptions on V4 assure that the derivatives satisfy the
same type of bounds or more precisely

1DV 4(z)| < ColRay)~olev
lim DVy(z) = 0

|| —o00
(v € Np) on a set a slightly smaller than (1.4),
{r € C": Rz < —R,|Sx| < p|Rz1|}

(R > Ry; p < py). This follows from Cauchy’s integral formula, appropri-
ately differentiated. Observe further that the breakdown of V= V44V, is not
unique. It will be convenient to cut off V4(z) so that it is 0 if Rz; > —R+1
but it remains unchanged if ®x; < —R. for then

DV A(z)] < CouR™EV—) (R, ) ~lol—e 7)

for any ¢ 0 < € < €y. Later R will be chosen large enough to assure
that finitely many of these derivatives can be made appropriately small. To



simplify notation, these estimates will be assumed to hold on the original set
(1.4): R = Ry, p = py. These estimates are stronger than those assumed
in [32] and it follows from there that the two Hilbert space wave operators
exist and are complete. (The choice of J here is different but the proof is
very similar.)

To state the main result of this paper, some notation is needed. The
scattering operator is defined by S = (W;)*W;. The scattering matrix
S(A) is defined by restricting S to manifolds (hyper-planes in this context)
of constant free energy A. The restriction operator, Ty(A) is constructed
explicitly in §5; it is a mapping from L?*(R") to L*(R™') and formally
S(A)To(N) = Th(N)S. Let

Vy;=HJ—-JH,

be the “effective potential” and R(z) = (H — z)~! be the resolvent. The
main result of this paper is

Theorem 1 Assume ey > 1/2. For almost every real A
S(A) — 1 = =2miTy(N) J*V;To(A)* + 2miTo(A) V] R(A + i0)V,To(A)*.  (1.8)

Additionally, S(\) has a meromorphic extension in A to all of C as a bounded
operator on L*(R™ 1),

Here R(A+i0) = lim,,_,o;+ R(A+4u) which exists in a context to be made
precise in §6. In fact most of the work proving Theorem 1 is not verifying
(1.8) but showing that the resolvent has a meromorphic continuation, in a
sense to be clarified by Theorem 6.2. Additionally it is shown that the first
term on the right side of (1.8) has an entire extension which implies that
any pole of (the extension of) S()) is a pole of the (extended) resolvent.
Poles of the resolvent are known as resonances. The converse question of
whether every resonance is a pole of S(\) is not addressed here. Gérard
and Martinez [9] prove the comparable result in the case F' = 0. They
show if one adopts Hunziker’s [16] method of extending the resolvent (a
version of “complex scaling”) then a pole of the resolvent is a pole of S(A).
This approach encounters difficulties in the case F' # 0 because the spectral
deformation technique of [16] causes the spectrum of Hy to vanish completely;
see Herbst [11, 1979]. A different approach to extending the resolvent is taken
here: see Theorem 6.2.



The plan of this paper is to begin with the construction of the operator J
as a Fourier integral operator. This construction is fundamental to the entire
paper because it assures that the symbol of the effective potential V; decays
exponentially fast in the field direction at least in the incoming and outgoing
regions of phase space. Exponential decay of the potential is what Yajima
[34] required for his continuation result. The phase is constructed in §2; the
symbol in §3. The construction of the symbol imitates Gérard and Martinez’s
[9] construction and requires considerable care; the phase’s construction is
relatively crude. As in [9] the symbol fails to be analytic in z; but it is
“almost analytic” in a sense to be clarified in §4. In §5, To()), referred to
above, is formally defined and conditions on Fourier integral operators () are
derived that assure Ty (\)* has an entire extension. In §6 the resolvent of Hy
is shown to have an analytic extension across the real axis in the appropriate
setting and similarly it is shown that R(z) has a meromorphic extension
across the real axis. The arguments in §6 are analogues of Yajima'’s [34] and
do not use “complex scaling” as was done in [9]. Therefore this work parallels
Gérard and Martinez’s [9] in the construction of J especially in §3 and §4;
the later sections are more closely related to Yajima’s [34]. In §7 the proof
of Theorem 1 is given.

Notation: Below is a brief list of the less standard notation used. Equation
numbers refer to the equation closest to where the notation is introduced.

a, a4, ae see after (4.5) b see Proposition 3.1 and (4.2)

ba,be see before (4.4) B, Ba, B(M, ), Ba(M,0) see before (5.17)
D; = —i0/0z; dyx = (2m)"™2dx, defined prior to (2.1)
Oy, , Oz, see 3.2 G(€) = (1/3)& + & |€1)? see (5.1)

hy see (1.2) H = Hy + V4 see before (2.1)

my, before Lemma 3.4 my after Lemma 3.4

To(X) see prior to (5.3) U see (5.2)

(v, R, K, k) see (2.4) [qs see (4.1)

¢ see Proposition 2.1 &) see after (2.2)

Qg see after (5.16) (z) = (1 + 2 - x)"/? see before (3.11)

|| - || is the operator norm |- |k see (5.6) || - ||m see (5.17)

(-,-) is the L? inner product

Also x4 denotes the characteristic function of a set A and x4 is a C* ap-
proximation of y4.



2 The Phase.

In this and the next section the operator J of (1.1) will be constructed. The
Fourier transform F will be normalized as

i(€) = Fu(§) = [ e “Eu(@)dia

where d; is (27r)™™/? times Lebesgue measure on R", and where u is in the
Schwartz space S(R") of C* functions of rapid decrease. Following Isozaki,
Kitada and Yajima [18, 19, 22] J is defined as

Ju(a) = [ = a(z, €)a(e) di.

where the phase function ¢ is to be constructed in this Section and the
symbol a in the next Section. (Although J is a Fourier integral operator,
little knowledge of Fourier integral operators is assumed here. Needed results
will be stated and will concern primarily pseudo-differential operators.) The
construction is, to some extent arbitrary since the phase and symbol are
not uniquely determined by the Fourier integral operator and there is some
flexibility in the choice of J. The construction of the phase is not exactly
parallel to the construction of Isozaki and Kitada [18] in the case F' = 0
although imitating their construction is a viable alternative; instead a closely
related method of [32] is used and the reader is referred there for additional
details.

The objective in the choice of the phase and symbol both is to assure
that the symbol ¢ of the operator H4J — JHy where H4 = Hy 4+ V4 decays
exponentially in x; at least in the incoming and outgoing regions of phase
space. This choice is analogous to that of Gérard and Martinez [9]. Explicitly
tis

t(z,6) = —2iVyp(z,§) - Vyea(z, &) + iFgTa(x, £)
1
—}—p(.’l?,f)d(ﬂ?,g) - Awa(xag) (21)
where
p@,6) = V.00, O — 5 (3,6)+ Fo +Valo) — 6] = iBa6(z.) (22



The choice of ¢ should assure that p(x,&) — 0 as Rz; — —oo as rapidly as
possible. Actually instead of the phase function ¢ it is more convenient to
construct the restriction ¢ of ¢ to an outgoing space {£ : RE; < k} for some
constant k, to be specified below. The incoming part can then be constructed
similarly or, as here, by “time reversal” and ¢ is formed by gluing the two
parts together (4.6). In this Section the discussion is entirely for the outgoing
“4+” case and so frequently the “+” superscripts are omitted. Thus ¢* should
be an approximate solution of the differential equation p = 0. In addition 6,
defined by ¢*(z, &) = x-£+67 (z, £), should satisfy the “boundary condition”:
0t (z,&) — 0 as Rx; — —oo, again when RE; < k. In this construction of ¢
the term —iA,¢ in (2.1) is neglected; ¢™(x, &) will be real when (z, &) are.
The first approximation of 8% is the solution 6; of
00,

2% . V.0 — FOL =y
§- Vo 7, A

given by, integrating along the characteristic curves
o
0,(z,&) = / Va(x + 2t — Ft’e;) — Va(—Re; + 2t&, — Ft’e;) dt
0

where £, = (0,&,...,&,) and e; = (1,0,...,0) € C" and R > Ry (Ry as
in the Hypotheses of §1). The second term in the integrand assures that
the integral exists as an improper Riemann integral; in fact the integral
converges locally uniformly in (z,€) (see (1.7)) so that 6, is differentiable
and its derivatives can be computed by differentiating “under the integral
sign”. The second and final approximation of 7 is 6, = 6, + 6 where 2
is a correction term defined as follows. Introduce a cutoff function Y(_u,1),
a C*°(R) function (that is infinitely differentiable) so that

) 1 ifa <1/2
X(-oo1)(#1) = 0 ifa; >1

Further define
¢’($;§) = )~<(—oo,1)(%ﬂﬁl)fé(—oo;)(%&)|V191($,§)|2-

The correction term is the solution of
06” .

2 -V, 0° — F— =
¢ 3

—



given by
6% (z,€) = / b(z + 2 — Fi’e,, € — Ftey) dt
0

(The construction in [32] needed additional corrections because of the weaker
assumptions there. Further corrections 6;, j = 3,4, 5, ... are obviated by the
construction of the symbol in the next Section.) Define 8% by cutting off 6,
as follows: let X(_oo,—r) be a C*°(R) function which is X(_c0,—g)(z1) = 0 if
1> —Rand X(,—p)(71) =1ifz; < —R —1. Let

wo(z1) = (#1 + R+ 1)X(—oo,—r)(21) — R—1

and
0+($1’$J->€) :02(w0($1)1$J_a€)- (23)

This cutoff locks in the analyticity of 8% in the other variables when z; > —R
is fixed. This completes the construction of §* and therefore of ¢*(z,§) =
z-&E+07(x,8).

Recall that V4 extends to the cone (1.4) analytically. Correspondingly
the phase ¢ (z,€) and symbol will be analytic on certain truncated cones:

I'(v, R, K,k) = {(z,§) € C"x C": |Sz| < —ypy(Rz1 + K), Rz < —R,
1S¢| < max{—~’py RE, |k|}, —REL > K} (2.4)
where 0 < v < 1, k is real. The parameters in this definition will be chosen as
appropriate during the construction of the symbol and phase but intuitively
1—7, 1/R, 1/K will be small positive constants and —1 < k < 1 is negative

in this Section and positive in the next. The properties of ¢* are summarized
in the Proposition below. Introduce the notation

Gy~ ()

for the set of all C*°(Q2) functions which are bounded along with all their
partial derivatives on a subset €2 of Euclidean space.

Proposition 1 Let 0 < 4, kg < 1,6 > 0 and k € N be given constants.
Then there erist Ry and Ky, 0 < K4 < Ry so that the phase, ¢*(x,§), as
defined above on

Q =T(7g, Ry, Ky, =) U{(2,6) € R*" : & < ry} (2.5)
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is real valued when (x,&) are and holomorphic on T' = T'(v4, Ry, K4, —Kg).
Additionally, if 1 > —Ry is fized then ¢*(x,&) is holomorphic in the vari-
ables (x1,&) on the cross section {(x,,§) : (R —1,2,,§) € T} of T for
some R > K. Further,

sup{|D2D{[V,¢* (2,€) — €| : la| + |8 < k, (¢,€) € Q} < 6. (2.6)
Moreover for any €4, 0 < €4 < €y,

Vo6 (2,6) — €| < C|Rmy| @ (|Rzy| + (RE)?) (2.7)

p(,6)|] < CRai |17 (|Ray| + (RE;)?) ™2 (2.8)

for all (z,€) € T and for some C > 0. The functions p and V¢t — &, and
Vet — z,belong to Cg(Q) and for all multi-indices o, (3

lim  X(oo,m) (#1)[| D3 DE[Vad™ (,€) — €| + | Dy D{p(e, €)]] = 0

|(z,6)[ =00

(X(-oo,r) denotes the characteristic function of the interval (—oo, R).) Fi-
nally, if ey > 1/2 in the Hypothesis, then ¢+ (z,&) — x - £ itself is in C5°()
and ¢* (,€) —x - € = O(|Rx1 |~ 1/2) on T.

Estimates (2.7), (2.8) are typical of those required in this and the next
Section and so it is worthwhile to formulate:

Lemma 2 For any € > 0 there is a constant C, > 0 so that for all
a,c>0,0>0,75k>0,
(a) if j+k>1/2+ ¢ then
Ce ’ —k —7
max{va, V@,
\Vi+k—1/2

/oo(a + 2bt + t*)F(c + 20t + 7))V dt <
0

(b) if k >1+¢ and c = (a + b*)/2 then
/Ooo(a + 2bt + t2)_k(c + 2bt + t2)—j dt < %a—k—t—lc—j_lp'

A proof appears in the Appendix.

Outline of the Proof of Proposition 1. Bounds (2.7), (2.8) follow
from definitions of §; and 6 and the comparable bounds for V4 by way of
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Lemma 2 (with a = Rz; and b = %fl/ﬁ) in the case R& > 0. The case
—k < & < 0 can be reduced to the case RE; = 0 by an elementary shift of
variables. The arbitrary bound ¢ > 0 in (2.6) is a consequence of the cutoff
of V4 (see 1.7) as well as the cutoff (2.3) of 67 (z,£) = ¢t (2,£) — x - &. The
decay as |z, | — oo is verified in [32, p. 542] and it follows from Lemma 3.3
below.

It remains to check where 6% is holomorphic. Observe that any character-
istic curve (z+2t£ — Ft’e;, { — Fte,) that begins at (z,€) in (7, Ry, K1, — k)
(in the domain of V) remains in I'(1, R, K, —k,) for ¢t > 0 provided R; — R
and K; — K are large enough and v < 1. Since the integrals defining 6,
and #2 converge locally uniformly, it follows that #* is holomorphic on
I'(vg, Ry, K4, —Kg). As for the holomorphy when Rz, > —R is fixed, that is
a consequence of the cutoff (2.3) in the definition of §*. That completes the
proof outline. (More detail may be found in [32, Section 4].), O

Remark: It follows from the Proposition 1 that €% is in C° when ¢ >
1/2 and therefore could be regarded as part of the symbol of J. This is in
marked contrast to the long range case of [32]. However ¢ will be treated as
the phase with one exception: Lemma 5.1 below.

3 The Symbol.

The symbol a(z,&) of the operator J is constructed in this and the next
Section. In this Section it is actually the restriction b of a to an outgoing
region of space that is constructed and a is defined in terms of b by (4.4)
below. On the one hand b will asymptotically approach 1 as Rz; — oo.
(Later it will be seen that J has a right inverse.) On the other hand b will be
chosen so that the symbol ¢ of H4J™ — JTHy (of equation (2.1)) will decay
to 0 exponentially fast as z; — —oo also in the outgoing regions of phase
space. Define

. 01 .
(2, 8) = T | A + Fay + Va(z) — €] - ZF@ ¢ " 8b(z, €)
1
(3.1)
or alternately ¢ is given by (2.1) and (2.2) if £, @ and ¢ there are replaced
by t*, b and ¢* respectively. Thus ¢ and ¢* agree in a certain outgoing
region of phase space. Regrettably b will not be analytic in the z; variable,
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although it is “almost” in the sense that the Cauchy Riemann equations
are asymptotically satisfied; see (3.7) below. It will therefore be necessary
to be more precise about the derivatives of b in the (complex) x; variable.
Introduce therefore the notation

i 9 1/ 8 9
- iy - ' 2
% =3 (aérexj ’a%,-) % =3 (amj “a%xj) (3:2)

for 1 < j < n. The main result of this Section is this.

Proposition 1 For any v,, 0 < v, < 74, ke > 0 there exist positive
constants Ry, K,, Ry > K, > 0, and a function b(z,&) defined and C*
on I' = ['(v,, Ry, Ky, ky) such that, for fized x1, Rz, < —R,, b(z,§) is
holomorphic in the remaining 2n — 1 variables on (the cross section of) T.
Let k, € Ny be arbitrary. Then, for all j,k € Ny, there is p > 0, and
Cjr > 0 so that,

008 tF(2,8)] < CjilRE o), (3.3)
lim 0L ok tt(z,&) = 0;
|(%,€)| =00

|Rap[FHH250 (1R | + (RE)?)?10, 05 (b(x,6) = 1) < Ciis
|(w1§)ﬁiw R [T (1R | + (RE1)?)? (05,05, (b(x, €) = 1) 0;
AL b(x, €)| < O pe M R21), (3.7)
1 1 Js

Here 74 and €4 are constants of Proposition 2.1; 0 < 74 < 1, 0 < ¢y < €y
and ¢ was defined by (3.1). The parameter k, plays no role below; k, = 0
is adequate for the applications here.

The remainder of this Section is devoted to the proof of the Proposition;
the proof parallels that of Gérard and Martinez in [9, §III]. The construction
of b is as a formal series, b ~ >~ bx. Each bg(z,£) will be holomorphic on
some region like T'(v, R, K, k) so that the z derivatives will behave (at least)
like

D%y, = O((Ray)~*1e).

12



If one substitutes the formal series for b into the equation t* = 0 and collects
the terms of like asymptotic decay then one is lead to the transport equations

1

where b_; = 0 and & > 0 and p was defined in (2.2). Solutions can be
constructed by integrating along the characteristic curves (z(t),£(%)):

2(t) = 2V.et(z(t),£(1))
gt) = —Fe

where e; = (1,0,...,0) € R™. For initial conditions n = £(0) and y = z(0),
&(t) =n — Fte; and

o(t) =y + 2t — File, +2 "VL0% (x(s), £(s)) ds (3.9)

where 07 (x,&) = ¢T(x,€) — x - €. The notation z(t,y,n) = z(t) and £(t,n) =
&(t) will be used when reference to the initial conditions is to be emphasized.
To assure that the solutions of the transport equations can be extended to
all of I'(, R, K, k) requires checking that the characteristic curves that begin
in this region stay within the domain of ¢*. More precisely, what is needed
is:

Claim: Given vy, 0 < vy < 7 there is cg > 0 so that if (y,n) €
(v, R, K, k), for some vy, 70 < v < 7, & > 0, R > Ry and some K >
Ky then (x(t,y,n),&(t,n)) exists and belongs to the slightly larger region
[(y, R, K', k) for allt > 0 provided R — R' > ¢y and K — K' > ¢y.

The Lemma below provides an a priori estimate of the integral expression
in the above expansion of z(¢); it is an analogue to Lemma 2.2 which is needed
to establish the Claim

Lemma 2 For all R > Ry sufficiently large and v, 0 < v < 74, K,
0< K <Randk >0, and for all real j, k > 0 such that k+j > 1/2 there is a
constant C' = C(j, k) so that, for (y,n) in (v, R, K, k), and z(t) = z(t,y,n);
£(t) = £(t,m)

| R @) (R 0)1/2+ (R&()

)2/2F)77 dt
< { C|§Ry1|_k+1(|§Ry1|/2+ (§R771)2/2F)_j_1/2 ka >1

CIRy:|F(|Ry1|/2 + (R )2 /2F)3+1/2 jfk <1 (3.10)
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A proof is included in the Appendix.

Proof of the Claim. The integral expression in the expansion (3.9) of
x(t) can be estimated as: for some Cy > 0

t
[ 920 (5), 05) dsl < o).
0
according to the preceding Lemma in view of the estimate (2.7). Therefore

S (t)] Sy + 2|t + CoR™
—ypv(Ry1 + K) — 29 py Rt + CoR™
—ypv(Rz1(t) + K) — 2py (v — ¥*) (=Rm)t + Co(1 + 27py )R~

—ypv (R (t) + K')

provided K’ and ¢ are chosen so that K — K’ > ¢y > Cy(2+1/vpy)R . A
similar argument shows Rz (t) < R provided 7, < 0 and R’ > R is chosen
large enough. Finally the inequalities |SE(t)| < —72pyRE (t) and RE (1) <
—k < 0 are elementary and do not depend on the choice of parameters.
These estimates do not depend on ¢ > 0 so that as long as the characteristics
(z(t),&(t)) exist they stay within the domain of ¢+ and therefore can be
extended by local existence theory to all ¢ > 0. This verifies the Claim. O

VAN VAN VANV

Equation (3.8) can be solved when k = 0 there:

bolysm) = exp (= [ plolty,m)s(tm) )
Then by is holomorphic in a truncated cone I'(y, R, K, k) by the Claim and

bo(y,m) —1 = O(|Rys|~“[|Ry[/2 + (§R771)2/2F]_1)

by (2.8) and Lemma 2. Define uy by by = byuy and substitute into the
transport equations (3.8): for £ > 1

ou 7
Zqub-Vyuk—Fa—nk = b—[(AybO)uk_l—i-QVybo-Vyuk_l—i-bOAyuk_l]
1 0
= > (y) 2 faDluy (3.11)
|| <2

for appropriate f,(y,n) which are bounded and holomorphic on I'(y, R, K, k),
and do not depend on k. Here the notation (y;) is extended to allow y; € C:
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{(y1) = (1 +y?)'/? is holomorphic on T'(y, R, K, k) and moreover |(y;)|/(Ry:)
is bounded above and below by positive constants there. (The square root is
chosen to be continuous on all but the negative real axis and so that v/1 = 1.)

It is further possible to show that by(x,&) — 1 converges to zero in the
“perpendicular” directions, that is as |(z,,&, )| gets large. This follows from
the comparable property for p established in Proposition 2.1 by way of the
following Lemma.

Lemma 3 Let I'(y,R, K,k) CI'(v, R, K', k) be as in the Claim above.
Suppose that q(x,&) is continuous on I'(y, R, K', k) and for some k > 1 and
J=0

R [*(R1)?/2F + [Ra1[/2)|g(2,€)| < C
lim Rz, [*(R€)?/2F + [Rz:1|/2)|q(,€)] = 0

(z,€)| =00

for some constant C > 0. Then, for any j' < j

lim (Ry1[*(Rm)*/2F + Ry /2757 [ la(a(t,y,m), €t ) [ dt = 0

[(y,m)| =00

where the limit is taken inside I'(y, R, K, k).

A proof is given in the Appendix.
Remark: Applying this result with ¢ = p it follows that b, satisfies (3.6)
with b there replaced by by.
Solving (3.11) involves constructing Banach spaces which use the follow-
ing function m; as a weight function:
ma(z) = —Rey — —— (S + R°)

for positive constants 0 < v* < 74, R* > Ry to be specified below. The
solution will be constructed on 2 C C?" where

O = {ze€C":my(x) >0}

Q = Q x{€eC": 3] < —(v)pvRE, RE < —K)
0 < k < k* By an elementary calculation, Q C I'(y*, R, R, k) where R =

R*/(py~*) so that Q is within the domain of ¢ provided R* is large enough.
Record the properties of m;.
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Lemma 4 In general
my(z) < (1+ (vpy) 2) 2 dist(w, 0)

where dist(x,00) denotes the distance from x to the boundary 0 of €.
Also mi(z) < —Rzqy. Fiz §, 0 < § < 1 — ~v*. Then, provided R* is large
enough (depending on ), whenever (Iz) < —py(v*)?Rz, — R*

(1 =) (—Rzy) < < —Ray (3.12)
(1 —y*)dist(z,001) < my(z) < (1+ (vpv) 2)Y2dist(x,0) (3.13)

and for any (y,n) €

%ml (z(t,y,m)) > 2Ft — 20Rn;. (3.14)

Proof. Clearly m;(z) < —Rz;. Therefore the inequality (3.12) follows
directly because (Sz) < —py(7*)*Rz; — R*. Consider next (3.13). Since
m1(y) = 0 whenever y € 09, it follows that m;(z) < |Vm|dist(z,0). But
|Vmy(z)|> < 1+ (v*pv) 2 which implies the upper bound for m; in (3.13).
(m; is regarded as a function of 2n real variables here.) Now suppose that
ISz| < —py*Rey — R*. It will be shown that dist(z, 0Q2) < |Rz;| and this will
imply the lower bound for m; of (3.13) in view of (3.12). Consider therefore
y =z — Rzxyeq; then my(y) < 0 so that dist(z,0Q) < |x — y| = |Rx| which
proves (3.13).

From the expansion (3.9) of x(t)

d d 1 Sz(t) d

£m1($(t)) = ——Ru(t) — oy (D) : agx(t)

0
> —2Rm + 2Ft - 2|a—$1%9+($(t)af(t))|

2 (19| + IV.30* (2(),£())))

> 2Ft+2(1 = 7)(=Rm) - CRa(t)] /7

by the estimate for V, 07 = V,(¢" — &) of Proposition 2.1. This implies
(3.14) because |z (t)| will be large for all ¢ > 0, provided R* is chosen large
depending on ¢ (by the earlier “Claim”) and because —Rn; > k. 0.
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Introduce a space A(f2) of formal series u = Y ;50 ux(z,§) in which to
construct the symbol. There will be two weights, m;(z) and

m2($,€1) = 5(§R€1)2/2F + ml(x)/Q

where § > 0 is the constant of the preceding Lemma. Define A(2) to be the
set of all formal series u = 3450 ux(7, &) where each uy(z,§) is holomorphic
on ), and

(k + 1) 7 2m, (2)*mo(z, £ ?|ur(z,€)| < Clu, k) (3.15)
( 1{_1)% my (z)fmy(z, )2 |lug(z,6)| = 0ifk>1 (3.16)

(in 2) for some constant C(u, k); and moreover ug(x, &) = g is a constant.
If C(u, k) is the minimal constant in (3.16) and if there is © > 0 so that

lull, = > Clu, k)u* < oo
k>0
then u is said to belong to A,(€2). Then A,(f2) is a Banach space. Define
also A(Q) = U,04,(9).
The next Lemma will serve to keep track of the asymptotic behavior of
the solution of the transport equations (3.11).

Lemma 5 If v is any positive integer then there is a constant C, > 0 so
that for any u € A(QY) and any multi-index o € N, 0 < |a| < v, and any
k>0,

(k + 1) G271, (2) ¥ my (2, &)/ (21) 1% Dug(,€)] < C,C(u, k)
lim  my (2)¥ " my(z, &) (1) VY DOy (2, )| = 0, if k> 1.

|(2,€)|—o0

Proof. Suppose first that « = 0. On Q, [{(z1)| > C|Rz1| > Cmy(z) by
(3.12) so that

O (u, k) (k + 1)+/2

o)™ (@ )l < & v ma(a, )72

which is the required bound provided C, > 1/C". The conclusion about the
limiting behavior as |(z, )| — oo in the case a = 0 follows similarly.
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Next suppose |a| = v; the general case follows from the special case by
adapting the initial argument. To avoid introducing more notation, assume
also that all the v derivatives are in one variable, z; say, 1 < j < n; that is
an unmixed partial derivative. The case of arbitrary o € Nf is similar. By
Cauchy’s formula,

T 2mi

0 up, V! ug(y) dy;
@O=5] R

Oz’ ajl=omi(z) (y; — )"+

provided that o > 0 is chosen so small that om;(z) < dist(z,0f2); o can be
chosen independent of z by (3.13). Therefore

0" uy, v! / C(u, k) (k + 1)3%/2dy,
2w lyj—xj|=omi(z

< -
oxY (@0l < ) ma(y)ema(y, &)*/2ovHimy (z)+!

On the circle, |y; — x| = omq(x), mi(y) > (1 — Co)my(z) because |Vmy ()|
is bounded by some constant C. Therefore

a”uk
oxy

VIO (u, k) (k + 1)3k/2
(1 = Co )3 2m, (z)F*+vmy(z, )F2°

== (2, 8] <

The choice o = 2v/(C(3k+2v)) minimizes the right side of the above inequal-
ity and gives the desired bound on the derivative of u;. Similar reasoning
shows that the derivative converges to 0 as |(z,£)| — oo; one needs only note
that |y| — oo as |z| — oo. This completes the proof. O

The preceding Lemma will be instrumental for controlling the asymptotic
behavior of the non-homogeneous term in (3.11). It will be further necessary
to describe the asymptotic behavior of certain solutions of

auk

2vw¢+ 'V$U,k —Fa—gl =w

for a given function w defined on €. (Fix & for the moment.) The solution can
be obtained by integrating along the characteristics (z(¢),£(¢)). Observe that
the characteristics that begin in Q stay in Q by (3.14). Introduce therefore
the notation

V.67 Vo= Fo) ) = [ wlalty,n) €6t (317)

—F—
9
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for a solution evaluated at (y,n). Assume that w(z,&) is holomorphic in
and _
|’LU(£L‘, €)| < le(l')_kmz(l', 51)_j

for some k > 1 and j > 0. By (3.14)
0
|(2vz¢+ : vx - F—)_lw (2/,77)|
96
< C/ (m1(y) — 20Rmt + Ft3)™F x
0

2
(5(%) + m}(y) — 20Rmt + F(146)t2/2) 7 dt

< C / " (ma(y) — 26Rmt + Fot?)* x
0

2
(5(%;) + ml;y) — 26Rmt + Fot*) ™ dt

since 0 < § < 1. Lemma 2.2 applies: for k£ > 1

0 CcC, .
2V, + . V,— F— -1 ’ < 'S —k+1 , —]—1/2.
[(2V.0 a&) w (y,n)| < \/mml(y) ma(y,m)

(3.18)
In addition it is further necessary to know that if

then

lim e ()5 ma (g, )2 (206 - Vo — P )~ () = 0 (3.19)
|(,€)| =00 0&

The argument of the preceding paragraph applies here because the added as-
sumption implies that the constant C of that argument can chosen arbitrarily
small provided |(y, n)| is adequately large. It is only necessary to check that
|(y,m)| — oo (in Q) assures that the characteristic path |(x(t,y,n),£(t,n)| —
oo uniformly in ¢ > 0. This latter fact follows from (3.9) by way of (3.10).

It is convenient to rewrite the transport equations (3.11) as u = 1+ Tu
where T is defined on A(Q) by

0

(Tu)k = (2vw¢+ : vw - F—)_l Z <y1>|a|_2faD;(cluk71
061" a%2
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for k£ > 1. Setting v = u — 1, (3.11) becomes
v-—Tv=T1

By (3.18) and Lemma 5, there is a constant C' > 0 not depending on k or v
so that ( ) 3(k—1)/24+2
CC(v, k —1)k>\"~
|(Tv)k(y7 77)' < 1/2 k k/2
(k +1)2mq(y)*ma(y, m)

for any v in A(2). This estimate and (3.19) assure that T'v belongs to A(2) if
v does. (There is one special case: checking (3.16) for (Tv); or equivalently
for (y1)7%fo = iAybo/bo; see the remark after Lemma 3.) Therefore the
preceding estimate on (Tv),(y,n) implies that as an operator on A,(12)

IT|<Cp<1

for p small enough. This assures that I — T is invertible and guarantees a
solution v € A, () of (I —T)v =T1, where I denotes the identity operator.
Then u = 14w and this completes the construction of the sequence by = byuy,
k > 0. Since u defines an element of A,(f2), there is a constant C > 0 so
that

C(b, k) (k +1)%/2
my (z)k(6(RE:)2/2F + my (z)/2)k/2
Ck+1(k+ 1)3k/2
(— Rz, )k ((RE1)2/2F — R, /2)k/2

|bx (z,€)] <

on the subset of Q where —Rz; > (1/py(7*)?)(|Sz|+ R*) by Lemma 4. Thus
each by, is defined on ['((v*)?, R, R, k) where R = R*/py(v*).

To define the symbol b, it remains to sum the b in a convergent series.
Introduce therefore X(1.00) € C*(0,00) chosen to be increasing and so that
X(1,00(8) =01if s <1 and X(1,)(s) = 1 if s > 2. Define

_ - §R$1
bz, €) = O};ka bi(x,€) + k;;a bi (2, €)X(1,00) (Cl(k + 1))

where k, is the arbitrary nonnegative integer in the statement of Proposition
1 and where C'; is some constant to be chosen. The sum is locally finite and
therefore defines a function holomorphic in (z,&).
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Verify (3.3). The case when j = 0 = £ is illustrative. Substituting
the above defining expansion for b into the definition of ¢+ and taking into
account the transport equations leads to the estimate

for some positive constants Cy(k,) and Cy and where the sum extends over
k > c¢(Rz1), again for a positive constant ¢. The verification of the above
bound involves the estimates on b, already noted and comparable estimates
for the first two derivatives of b, in z1; which follow from Lemma 5 Recall also
the bounds on the z; derivative of ¢* from Proposition 1; the elementary
inequality (k + 1)¥ < 2% is used as well. The estimate (3.3) in the case
j = 0 = k follows directly by choosing C; > C,. The verification of (3.7)
is very similar; this time the decay in the R¢&; variable is disregarded as
uninteresting for the present purposes.

The estimates (3.5) and (3.6) for b—1 can now be verified. Since by satisfies
(3.5) and (3.6) (replace b there by by) it suffices to check the estimate for

Bz €) = T L
oz, &) = 15162519‘, ve(x, &) + k;g V(2 §) X(1,00) <C’1(l€ n 1)>

(vg as defined above) because b — 1 = (bg — 1)0 + (b — 1) 4+ ©. Because v is
in A, and vy =0

5(x,&)| < Cmy(z) tma(x, &) < C'(Rxy) ~H(REL)?/2F + ml(ac)/2)_1/2

on I'((v*)%, R, R, k) where R = R*/py(7*)?. (C; may need to be increased.)
By Lemma 5 the same argument applies to the derivatives in z; (without
further increasing C4). This completes the proof of Proposition 1. O

4 Analyticity of the Symbol.

Equation (3.7) says that the symbol b constructed in Proposition 3.1 is almost
analytic in the z; in the sense that will be made precise by calling on a result
of P. Laubin [27, Theorem 3.2]. To state the special case of that result needed
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below, some notation is needed. For any Q C R?>"~! and 6§ > 0, define the
cone g5 C C*"

Tos={(z,€): Rz, RE) € O, [Sz1| < SRy + K,), Sz, |2+ [S€)? < 6%}

where K, is the fixed constant of Proposition 3.1. Suppose now that 2 C
R?"~! is open. Then a C* function f is said to be exponentially decreasing
if for every compact subset K of Q there is §,u,C > 0 so that f(z,€) is
defined for all (z,£) € I'x 5 and

f(z,€)| < Ce#1 (4.1)

Theorem 1 (Laubin) For any f € C®(Tqy,) such that, for 1 < j <
n7
Oz, and 8Ej f are exponentially decreasing

there is a C'™° function g which is exponentially decreasing and for1 < j <n
Os,f =09 and O f =0 g
J J

For an (admirably clear) proof see [27, Theorem 3.2]. What will be re-
quired below is a “uniform” version of this result. Define f € C*(T'q,,) to
be uniformly exponentially decreasing on €Q if there is 6, 4, C > 0 so that (4.1)
holds on all of I'g 5. The intended application is to f = b or more correctly to
b appropriately extended so that b(z,£) = 1 if Rz > —R,: explicitly extend
b as

1+ X(fm,fZ)(%xl/R) [b(.’E, 6) - 1] (42)

where
i ()= {1 i <-5/2
XMoo= 0 if gy > —3/2

and where R > R, is a parameter to be chosen later. The extended function
will also be called b; its domain contains I'g 5 where

(4.3)

Q={(r,8) eR™ £ < —k,}

and 0 < 6 < y,py. Since 0g;b and & b are uniformly exponentially decreas-
ing Laubin’s Theorem 1 apphes Let g be the function whose existence is
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guaranteed by that result. Claim that not only is g exponentially decreasing
but in fact it is uniformly exponentially decreasing on the smaller set

Q' ={(z,&) e R : ¢ < 3k, /2}.

To verify the claim, suppose that K C €2 is a compact set, 6, u,C' > 0
are the constants so that g satisfies (4.1) (replace f there by g) on I' 5. To
establish the claim, it will be shown that if g C 2 is any translate Kq =
K +d of K by a vector in d € R?*" that is perpendicular to the z; direction
(d; = 0) and if Kq is at least as far from the boundary of Q as K (d,, 11 < 0)
then b satisfies (4.1) on I'c, s with the same positive constants C, u,d. For
let ba(z,&) = b((z,€) + d). Because of the uniformity of the exponential
decrease of 0z;b and 85]1), the derivatives 0z;bq and ng bq satisfy exactly the

same bounds on all of €2, as do dz,b and 65,17 1 <j<n. (Since dyy1 <0,
J

ba is defined on all 2.) The bounds for the function g of Laubin’s theorem
depend only on these bounds and I and not on the particular function f or
even on the choice of g (which may not be unique) provided g is as in [15,
Lemma 4.4.1] which is the existence result Laubin bases his Theorem on.
(This independence is made explicit in equation (4.4.2) of [15].) It follows
that the function whose existence is guaranteed by Laubin’s result applied
to bg can be chosen as the translate gq(x, &) = g((z,€) + d) and gq satisfies
the same estimates as g on I and this completes the proof of the claim. For
future reference we shall denote ¢ as b, and write

b="bc+by

so that b, is uniformly exponentially decreasing on I'q: 5, for some ¢ > 0 and
b4 is analytic there.

The phase ¢ and symbol a of J are defined by cutting off and extending
¢T and b appropriately. Let

" (2,8) = 1 + X(=o0-2) (R&1/k0) (b(z, §) — 1)

for X(—co,—2) as in (4.3). Define the incoming analogues of a™ and ¢* by
“time reversal”:

a (.I, 5) =at (Ta _g) ¢_ (37, f) = _¢+($’ _5) (44)
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(Recall ¢+ is real valued on R?".) Tt will also be convenient to glue the
incoming and outgoing symbol and phase as follows:

alw,€) = a*(z,€) + a~(2,€) — 1 = a* (x, &)a” (x,€) (4.5)

¢(2,8) = ¢ (%, ) X(—00.0) (RE1/Ko) + &7 (2, ) X(0,00) (RE1/ Kr) (4.6)
(X(=o0,0) and X(0,00) as in (1.3)). Corresponding to the breakdown b = b4+ b,
there is a = a4 + a. where

ae(7,€) = X(—oo-2)(RE1/Ko)be(T, €) + X(—00,—2) (= RE1/ K )be (T, —E)
aa(2,8) = 14 X(-oo,-2)(RE1 /Ko )(ba(z,€) — 1)
+ X(=o0,-2)(—RE1 /Ko) (ba(T, =€) — 1)

Corollary 2 For b = by + b, and a = a4 + a. as defined above and
for any 5,k € Ny, the derivatives %lalglbe (resp. 8%1851&8) are uniformly
ezponentially decreasing on Q' (resp. on R?7!). Further there is § > 0
(6 = 6(M)) so that ba is analytic (in 2n variables) on Iq 5 whereas as €
C®(Tran-15) is analytic on Tren-15 N {|RE| > 5k,/2} and, for fized &,

IRE1| < bk, /2 is analytic in (x,€,) on the cross section of I'ran-14.

Proof: The conclusions, as far as a is concerned, follow directly from
those for b and the definitions. Consider therefore b. The decomposition
b = by + b, has already been constructed in the preceding discussion; it
remains only to discuss the derivatives of b,. Only first order derivatives are
considered. The decomposition applies equally well to the derivatives of b as
to b:

0b/ORx1 =h+e; and 0b/0SSz1 = ih + ey

where e; and e; are uniformly exponentially decreasing and h is analytic
on I'gr 5. (The analytic terms h and ih are related because of (3.7).) It is
quite possible however that the decompositions of the derivatives are not
the derivatives of the decomposition. It remains therefore to check that the
derivatives of b, in Rx; and Iz, are uniformly exponentially decreasing. Only
the first order derivatives will be checked. Certainly when z; > 0 then b =1
so that b, is both uniformly exponentially decreasing and analytic. It follows
from Cauchy’s integral formula (and it’s derivatives) that the derivatives of
b. are exponentially decaying in z; > 0. Next suppose x; < 0. Express b as

b= /(h + e1)dRzy + (ih + e2)dS1,
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where the path integral is over a path from Rx; = —oo, Sy = 0. The decay
of the gradient of b assures the integral is well defined. (See Proposition 3.1.)
The path integral gives an alternative decomposition of b as b4 + b, where b4
(corresponding to k) is analytic and b, is exponentially decaying in Rz; < 0.
The difference b, — b, is both exponentially decaying in z; < 0 and analytic
and so, as before, the derivatives are also exponentially decaying. Thus the
first derivatives of b, must themselves be exponentially decaying. This verifies
the result for first order derivatives and the general case is similar. a

5 Continuation of Integral Operators.

In this section the operator Ty(\) of restriction to the manifold of constant
free energy A is introduced. Then a class of Fourier integral operators )
is introduced for which Q7,(A)* can be continued analytically in A. The
class includes Q = (H4J — JH)) restricted to the outgoing states. This
continuation result is a building block from which the continuation results
for the resolvent and scattering matrix are derived in the next Sections; it is
an analogue of Yajima’s [34, Lemma 2.1].

As a preliminary to defining Ty()\), introduce a spectral representation U
for Hy = —A + Fz1. Define

GO =@pB)E+a(&G+...+&) (5.1)

and _
Uv(z) = F"/? / (@ EGOFg(¢) ¢ (5.2)

for all v in S(R™) so that U extends to a unitary operator on L*(R"™) also
denoted U, and
HO = U*$1 U.

Define, for each real A\, Ty()\) as an operator on L*(R") to L?(R"™!) by
To(Mv(zr) = Uv(\, z1), i.e. U followed by restriction to the plane z; = A
so that

To(Nv(z,) = F_n/2/ei()\'fl‘FZ'J_'fJ_—G(f))/F@(g) dqi&

where z; = (z3,...,x,) is the projection of x on its last n — 1 coordi-
nates. Of courses Ty(A) is not defined on all of L?(R") but it is defined
on H*(R) ® L*(R™ ') provided s > 1/2. Here H*(R) denotes the usual
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Sobolev space: H*(R) = {u € L?*(R) : (1 + D?)*2y belongs to L?>(R)};
where D; = —id/0x,. Abbreviate H*(R) ® L>(R"™!) as H®* ® L%. It can
further be checked that Ty()\) is strongly continuous in A on H* ® L? and
that the Fourier transform of Ty (\)*u is simply,

[To(N)"u]"(§) = (2m)/2F~"/2e P /FHEO Py (e [ F) (5.3)

for u € S(R"1) in the sense of tempered distributions for example.

One consequence of these definitions is the following observation about
the spectral measure Fy of Hy. Suppose u,v are in H*® L? for some s > 1/2
and let d(Ey(A\)u,v)/dX\ be the Radon Nikodym derivative of the measure
(Eo(-)u,v) with respect to Lebesgue measure. Then

d(Es(N)u, v)/dA = (Ty(\)u, To(A\)v). (5.4)

Many of the operators to be encountered below are pseudo-differential
operators defined by

Yu(z) = Os- / / e~V p(x, o + y, E)ulz +y) dyde (5.5)

for all w € S(R™). Here “Os-” indicates that the integrals are oscillatory
integrals; see [24], for example. It will be convenient to have a criterion that
assures that ¥ is bounded and that is given by the Calderén-Vaillancourt
theorem [6], a special case of which will now be stated. For the present
purposes, the symbol p will be restricted to C®(R3"). Define for each k =
0,1,2,...

plk = sup{|DFD]D{p(x,y, )|, o+ B+7| <k, (z,5,6) €R"}  (5.6)

The version of the Calderén-Vaillancourt theorem [6] (or see [24, p. 224], for
example) convenient for the present applications says that there is a constant
C > 0 and integer £k =0,1,2,... not depending on p so that

)l < Clple

where || - || denotes the operator norm on L?(R").

One application is to show (as in [17, 22]) the boundedness of operators
like J and H4J — JHy. Introduce therefore a slightly more general class of
integral operators () that will be convenient for applications. Define

Qu(z) = / @) q(z, €)a(€) de for u € S(R™) (5.7)
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where the symbol ¢(z, £) is any C*°(R?") function and ¢ is the phase function
of (4.6).

Suppose @1 and ()2 are two such operators defined with symbols ¢; and ¢
in C3°(R*"). Then each Q% maps S(R") to itself, j = 1,2, and for u € S(R")

QiQsu(z) = [ [ 0= O-0wg, (2, €)1y, Euly) dy de.

Make a change of variable: £ — £ where

1
¢ = [ Vaoly+ s —y), ) ds

The mapping from £ to £ has a global inverse, provided that the parameter
0 > 01is chosen small enough in Proposition 2.1. ;@) is a pseudo-differential
operator as in (5.5) with symbol p

,0(33, Y, 51) =4q1 (.T, g)QZ(ya g)j(gl’ T, y)

with € = £(¢') and J is the Jacobian of the change of variables.) Therefore,
for any £ =0,1,2,... there is a constant Cj 4 so that

1ol < Crola|k|g2|k

The Calderén-Vaillancourt theorem applies to show that )1Q)% is bounded.
In particular the @;, j = 1,2 are bounded operators on L?(R") and

1Q5]l < Clajlw (5-8)

(for take Q1 = Q).
Example. Recall the operator

Ju(@) = [ € Da(a, )a(€) dig (59)

where ¢ and a were defined in (4.6) and (4.5). The preceding discussion shows
that JJ* and hence JJ* — 1 is a pseudo-differential operator with symbol
plx,y, &) = a(z,&aly,§)T (&', z,y) — 1, in the notation of the preceding
paragraph, and the Calderén-Vaillancourt theorem provides an estimate of
the operator norm. Given r > 0 it is possible to suppose that

1JJ* — 1] <7 (5.10)
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provided the parameters ¢ and £ in (2.6) and R in (4.2) are suitably chosen.
The parameter r will be later be fixed very small during the construction of
an analytic extension of the resolvent of H below. Specifying r < 1 assures
that JJ* is invertible and J has a one-sided inverse, J*(JJ*)~' (which may
be a two-sided inverse under appropriate assumptions.)

It is the operators QTy(A)* that are of interest in this Section. Recall
To(N)* maps L?(R™™!) to H*®L? and @ is initially defined on S(R") so that
it is necessary to check where and how QTy(\)* is defined. One convenient
way to represent QQTy(A)* is to first choose ¥ € S(R) with x(0) = 1. Then
for any u € S(R™™'):

QTN u(w) = lim —— [ 401106 08, )(, )€1/ )
(5.11)

for any u € S(R" ') provided the limit exists in L?*(R"). The next result
gives a simple condition on ¢ that assures the limit exists and defines a
bounded operator.

Lemma 1 Assume ey > 1/2 in the Hypothesis. Then for any k € N
there are constants C > 0 and m € N so that for any operator Q as in (5.7)
with symbol q,

1X(=c0.0) + (1) X(-00)] QL1 "X (-0 0lll < Clglm. (5.12)

Here X(0,00) and X(—c00) are as in (1.8). In addition, for any real A, the
operator
(X,00) + {21) ™ X(=00,0)) To( V)" (5.13)

is bounded as a mapping from L?*(R"™1) to L*>(R™) for every A € R. In par-
ticular [X(—oo,0)+ (1) ™ X(=00,0)]@T0(N)* is a bounded operator from L*(R"™")
to L*(R™) whenever |g|m, < oc.

Proof: Consider first Ty(A) and (5.13). It will be shown that
(X(1,00) + {(21) 7' X(00,1) To(N)* (5.14)
is bounded where X(1 o) in C*°(R) is chosen so that X(1,0)(21) = 1if 21 > 3/2

and X(1,00)(z1) = 0 if 21 < 1/2 and X(—w,1)) = 1 — X(1,00)- This im-
plies (5.13). Begin the proof of (5.14) by considering the L? inner product
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(1) X oo,y To(A)*u, v) for u € S(R™!) and v € S(R™). By (5.11)

2 F™)"?((21) ™ K(=o0,) (1) To(X) "y, v)

= lim [ [ €08 CONP3(561) (1) X (Coey (1) (@)(EL/F) d d

for any x € S(R™) such that x(0) = 1. Substitute the identity

1 0 : .
E— T S Py e (97 5.15
e (a8, 1)

and integrate by parts in &;:
(20 F™)2((21) (oo To(N) ', 0) = (P,0)
where w is given by its Fourier transform,
B(€) = (&) 2exp(iG(E) [ F)i(€L),

(which is in L2(R™)) and ¥ is a pseudo-differential operator (5.5) which is
bounded by the Calderén-Vaillancourt theorem. And so (1) X (oo, To(A)*
is bounded on L*(R™ ') to L*(R™). The argument for x(1,.0)To(A)* is very
similar with the minor difference that the integration by parts involves inte-
grating exp(iz1&; + 1G(€)/F) this time (instead of (5.15)).

To establish (5.12), it will be shown that

X500 + (1) X (000 Q21" X(—00,-1) ] < Clat|m- (5.16)

where X(—c0,—1))(T1) = X(1,00)) (—%1); clearly (5.12) and (5.16) are equivalent.
Integrate by parts k£ times in &;

QX (0, 1) (x1)u(x)
ok .
= (—i)k>~<(—oo,0)(961)/8—5{c (€9 q(x,£)) (R(—oo,-1y) " (€) d&
.~ —iy- ak: 10(x
+2X(0,oo)(x1)Os—//e yga—ﬂc (e o ’5)(1(3:,5))

k
+x -
[yl . ] o (W1 + 1)y + ) dyde
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where §(z,§) = ¢(x,£) — z - £&. Multiply the above equation by [X(—cc,0) +
(1) ¥ X(—o0,0]: then (5.16) follows from the Calderén-Vaillancourt theorem
and (5.8). (Here and only here €% is regarded as part of the symbol and not
the phase; it is in C{°(R™) by Proposition 2.1.) O

The main result of this Section, Proposition 2 is comparable to Yajima'’s
[34, Lemma 2.1]. It assures an analytic continuation of QTy()\)* as a func-
tion of A\ under appropriate assumptions on ). It is convenient therefore to
introduce a class of symbols ¢ for these operators. Briefly B will be defined
so that it includes the symbol a and a./h, (h, was defined in (1.2)); whereas
B4 C B includes a4. More precisely, for each R,6 > 0, let

Qrs = R™U{(z,€) € C*": Qx| < 6(Rzy + K,), Rry < —R,
1Sz, 2+ |S€L 12 < 62, (S| < )

(Qp,s is small enough to be contained in the domains of ¢, a, a. a4 but large
enough to enable the change of path of integration arguments of the next two
Propositions.) Let CM(Qgs) denote the space of all functions continuous on
(2grs and bounded along with their first M partial derivatives in the real and
imaginary parts of the 2n variables. For each integer M > 0 and § > 0
define B(M, ) to be the set of all functions ¢ in C®(Qgs) N CM(Qg,) for
some R = R(q) > 0 such that for each fixed z1, g(z1,2,,€) is analytic in
(z1,€) on the cross section of Qg s N {|RE | > K} for some positive k = k(q).
(K, is from Proposition 3.1 and is fixed.)

Define B4(M,6) C B(M, ) to include those g which are analytic in all
2n variables on

QR’(S N {|§R€1| > KZ} N {?R.’L'l < —R}

and, for fixed &, |&1| < k are analytic in the 2n — 1 variables (z,£,) on the
cross section of Qg sN{Rz; < —R} for some R = R(q) > 0 and k = k(q) > 0.
Define further, for any integer m > 0,

gllm = sup{|0°8’q(z, €)| : (x,€) € Vg, |+ B] < m, v, B € N2}, (5.17)

where 9% and &’ are the higher order derivatives in the 2n complex variables
(x,&) corresponding to those introduced in (3.2). (Reference to R and ¢
is omitted from the notation || - ||;.) Finally let B = U s508(M,0) and
B4 = U sso0B4(M, ). Then, provided p > 0 is small enough

a,ae/hueB as € By.
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Observe that, for any M > 0, it is possible to choose 1 > 0 so small so that
ae/h, is in B(M,0) for some 6 > 0. Also B and B4 are algebras.

Proposition 2 Assume ey > 1/2 in the Hypothesis.

(a).

(b).

Suppose > 0 and k € Ny. Then there is M = M (k) so that, for any
operator @ as in (5.7) with symbol q € B(M, ), for some 6 > 0

(=AY h,QTo(N)* and HEh,QTo(N)* (5.18)

extend to entire functions of A taking values in the space of bounded
operators from L2(R™™!) to L?(R™). Denote the extensions by the same
symbols. For any compact KK C C, there is a constant C not depending
on q so that, for all A € IC,

I(=2)"huQTo (N[l + | Hghu @To (A)* ]| < Cllgllar (5.19)

For any v > 0, and Q with symbol ¢ € B, Qe VPUTy()\)* extends
to {|SA| < v} as an analytic operator valued function bounded from
L?(R™Y) to L>(R™). (The extension is denoted by the same symbol.)
Moreover if 0 < v/ < v then there exists C > 0 and m € N so that for
all A, | SN <V

1Qe™ PV Ty (V)| < Cllgllm

Proof of Proposition 2: Establish Part (b) first. Clearly Qe (P?) is
bounded from H* ® L? to L?*(R") for any s and the representation (5.11)
is valid. (The limit in (5.11) can be taken under the integral sign.) From
(5.11), it is clear that Qe “PYTy(\)* extends analytically to {\ € C: |I\| <
V' < v} and is bounded as claimed; (see (5.8)).

For the proof of Part (a) recall that h,QTy()\) is bounded by Lemma
1 and the expansion (5.11) is valid. Apply Cauchy’s Theorem in (5.11) of
h,QTy(A)*u (z) to change the path of integration for & from the real line to a
path which is the graph & +i((&;) of a nonnegative C* function ((&;) which
is 0 if |£;]| < k and is the constant p if |£;| > 2k where £ > 0 is chosen so that
¢ and g are analytic for |[R&;| > k. Therefore, letting 6(z, &) = ¢(x,&) —x - €,

2m) 2 F"2h,QTy(\) v ()

_ /R N / iz E 0@ EtiCer) g=iNa +IG(E+iCe)/F M —a1C (7))
q(z, & +iCer)d(& +iQ)o(§L/F) dy. (5.20)

31



The exponential factor e’“/F decays rapidly when ¢ > 0 because iG(& +
iCer) = iG(€)—i& (2 +¢3/3—(|€|? so that the above integral exists absolutely.
Since e~®¢h,,(z1)q(x, & + iCey) is bounded along with its derivatives up to
order M, the decay of €'“ assures that h,QTp(\)* extends in ) into the
complex plane as an entire function taking values in the space of bounded
operators of L>(R™!) to L2(R"). Check (5.19) in the case k = 0 next. It
follows from (5.8) provided one checks that 6(x, £ +ie;) can be replaced by
6(z,€) in (5.20) . Since exp(i(f(z, & + iCey) — O(x,€))) is in By, it can be
incorporated into the symbol.

It remains to check (5.19) when £ > 0. Consider the case £ = 1 there
and begin with (—A)h,QTo(A)*. If the symbol ¢ happened to have compact
support in & then this case would follow from the & = 0 case already treated.
It is possible therefore to assume that the symbol is supported on a region
that does not include £ = 0. Substitute the identity below

(ivEHG(E)/F~C[P/F

) F o . )
= Yoo (Rxy)e™E Y _iG(e)/F—¢l¢l?/F
X(-o0,0) (Rz1)e G e 56
Y F 0 iz-E41i —
+ X(0,00) (R1) Y pimt+iGE)/F=CIE?/F

iFzy + €20 — (') — 2¢& 0&

into the above expansion for h,QTy(\)*v (). Here R is a constant chosen
large enough to avoid division by 0. (X(—cc,0) Was defined in (1.3).) Integrate
by parts in the & variable. It then follows that Ah,QT,(\)* is bounded
and the operator bound (5.19) in this case follows just as (5.8) above. To
complete the argument for the k£ = 1 case, it suffices to compute the operator
norm of x1h,QTy(N)*. In view of the exponential decay of h,, it suffices to
show that x(1,00)(21)21Qh,TH(A)* is bounded. The same integration by parts
argument as in the first half of the £k = 1 case applies again here. This
completes the proof of the case k = 1; the general case follows by repeated
integrations by parts. a

*

In Proposition 2 above it was shown, for example, that h,QT,(\)* and
Qe V'PUTy(N\)* extend analytically provided @ € B. In the next Section
there will be occasion to consider operators of the form h,Q.Q7QTy(A)* and
e PR QTy(A\)* where Q1,Q, € B. Can they be extended analytically?
Under somewhat more restrictive assumptions the answer is yes; this fact
follows from the preceding Proposition 2 by way of the Proposition below.
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Proposition 3 Assume that Q1 and Q)2 are two operators of the form
(5.7) with symbols q1,qq € B.

(a). Then, for any v > 0, and any sufficiently small pu > 0, there are Qy in
B, 3 <k <10 so that

Q1Q5h, = Z huQaj1Qy; + Q4j+1€_U<D1)QZj+2

j=1,2

If in addition q, is in B4 (resp. if qo is in By) then g3, gs, q7, and qg
(resp. qu, Gs, gs, and qip) are in By.

(b). Suppose now that g1,qo € Ba. Then, for each u,v > 0 there are Qi in
B4, 11 < k <18 so that

Q1Qae™ PV = %547 PVQE 1 Quj + Qi huQujyo

Denote the symbols of Qi by qr. Then, for any integer m > 0, there is a
constant C' > 0, not depending on q, or qs so that, for2 < ;7 <9,

1g2-1llm < Cligllm  and  |igzjllm < Cligallm-

Proof. Establish Part (b) first. Consider ¥(—co,0)FQ}Q2e~"Pu where
F denotes the Fourier transform and where u € S(R”). By (5.7) and a
change in the contour of integration in the z; variable one has

00,0) (§1) FQ1Qae™ Py (€)
= X(- (51)/ —igletiv(zent)y (z — iw(zy)ey, €)

/ gitetivieent) o (4 jw(z)er, Oe Yl d¢dz.  (5.21)

The new path of integration is the graph x;+iw(z1) of a C* positive function
w where w(zy) = 0if z;1 > —R and is w(z;) = v if ;1 < —R' where R’ >
R > 0 are chosen so large that the portion of the graph of w(z;) for which
21 < —R lies within the domains of analyticity of ¢;, g2 and ¢.

Introduce the decomposition 1 = X(—oo,—r)(£1) + X(=R/,00)(%1) into the
integral over z in (5.21) where X(—oo,—r') (T€SP. X(—m',c0)) is @ C*° function
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supported on (—oo, —R') (resp (—R' —1,00)). On the support of X(_c,— s
(where w(z;) = v), the change in the phase due to the change of path is

d(x +iw(zr)er, () — ¢(z + iw(zr)er, &) — ¢(z, ) + d(x, &)
= —w(& —G)+0(x+ive,()—0(z, () —0(x +ive, &) + 0(x,§)

where 0(z,&) = ¢(z,£) — x - €. Since exp(i(6(z, &) — 0(z + iver,£))) is in By,
it can be regarded as part of the symbol. Similarly

€U<§1))~((—oo,0) (61)6"& and e VSt v(G)

both belong to B4 and they too may be incorporated into the symbols so
that

X(=c0.0) (Dl)QTfC(—OO,—R’)Qze_"wl)

is of the form e*”<D1>Q§Q4 of the statement of this result. The other portion
of (5.21) where X(—r/,o0) r€places X(—co,— ) is clearly of the form Q;h,Qs. To
complete the proof of Part (b) it remains to show X(O,w)fQ{Qge_”(Dl)u also
has the required expansion. The argument is exactly parallel to that above
except that the path of integration becomes z; — iw(x;) this time. This
establishes Part (b) and the estimates on the symbols ||gx||m, 3 < & < 10 are
routinely verified.

The proof of Part (a) is similar. Consider X(—0,0)(21)@Q1Q5h u(z). Again
Cauchy’s theorem applies to change the path of integration, this time in the
& variable, from along the real axis to along the graph & + iy (&) of a C™°
function ¢ which is 0 if |£;] < 3x/2 and is —p when |&;| > 5k/2. (Therefore
4 must be small enough to for the path to be in the domain of analyticity of
¢, ¢2 and ¢.) Introduce x(&;) in C§°(R) which is one if |£;| < 5x/2. Then

X(~o0,0)(71)Q1(1 — X(D1))@3hyu(x)
= X(foo,o)(xl) /ei¢(w,67iue1)q1($’€ _ i,uel))

/ e~y (y, €+ ipen ) (1 — X(60))hu(y1)u(y)dy dé

The change of phase due to the change of path is

¢(I’ g - i,u'el) - qﬁ(y,f - i,u'el) - ¢($, 5) + ¢(y> 6)
= —i(z1 —y)p+0(z,& —iper) — 0(z,8) — (0(y, £ —iper) — 0(y,£)).
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The factor expf(z,& —iper) — 0(x,&) is in By whereas e #¥'h,(y;) is in
Cy° () for suitable R,0 > 0 and so both factors may be incorporated into
the symbol. Therefore X(—00,0@1(1 — X(D1))@5h, is of the form h,QsQ;.
Obviously X(0,00)@1(1 — X(D1))@5h,, is of the same form. As for Q1 x(D1)@5,
it is of the form Qse (P Qg for any v > 0 which verifies Part (a). a

6 Continuation of the Resolvents.

It is possible to analytically continue the resolvent Ry(z) = (Hy—z)~" across
the real axis whereas the resolvent R(z) = (H — z)~' has a meromorphic
continuation under certain assumptions which will be made precise in this
Section. The result below, for Ry, is an adaptation of Yajima’s [34, Corollary
2.3]

Proposition 1 Assume ey > 1/2. Suppose that Q)1 and Qy are integral
operators as in (5.7) with symbols g1 and go in B and p,v > 0. Distinguish
four possible choices for the definitions of P, and Ps:

1. = h,Q1; P, = h,Q2, 2. = h,Q1; Po = Q" v(Dy)
3. P1 Qie” vDu), s Py = uQ2, or 4. Pl Qe D), s Py = Qae” U<D1>

Then, in any case, PiRy(2)Ps has an analytic extension from Cy = {£3z >
0} to {£32 > —v} (and in fact to all of C in case 1) as an operator on
L*(R™). The extensions are denoted PRy +(z)Ps. Additionally

PlRO’:}:(Z)P; = PlR()(Z)PQ* + 27T7;P1T0( ) To( )P*

for £3z < 0. For any compact subset K of {z : £3z > —v} (or K C C in
case 1), there is a constant C and m = 0,1,2,... not depending on ¢, or ¢
so that,

Sup [|P1Ro,+ (2) Py || < Cllaallmllgzllm-

E1S

In cases 1 and 2, if one further supposes that Q1 is bounded as a mapping from
the domain D(Hy) of Hy (with the graph norm) to itself then h, Q1 Ry +(2) Py
is bounded from L2(R") to D(Hy) and, for K, C' and m as above

sup [ Hohu@1Bo,+(2) Py || < Cllgu]lmllgallm
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Remark. Observe that Ty(2) Py = (PTp(Z)*)* has an analytic extension
by Proposition 5.2.

Proof of Proposition 1. It suffices to consider the “+” case (Sz > 0)
because the other case is similar. Let I denote a bounded open interval and
1€ its complement. Then the operator

PiRy(2) Eo(I°) Py = [PLRy(4)][(Ho — 1) Ro(2) Eo(1°)] Py

can be continued across the interval I because (Hy—i)Ro(2)Eo(I¢) can be as
an operator on L?(R") and Py Ry(7) is bounded on L?(R™). Moreover if ¢,
is bounded on D(H,) then the continuation of PyRy(z)Ey(I¢)P5 is bounded
from L?(R™) to D(H,) provided z stays a fixed distance from I¢.

On the other hand, by (5.4)

dA

(PR () Eo(1) Py, v) = [ T To )
I A=z

for u,v € S(R™) and z € C,. (@7 and @3 map S(R™) to itself.) Accord-

ing to Proposition 5.2, P;Ty(A\)*, j = 1,2 both extend analytically below

the real axis so that the path of integration above is arbitrary between the

endpoints of I. Consequently the above expression allows one to extend

P Ry(2)Eo(I)P; to below the real axis and the extension is

The final statement of the Proposition follows because h,Q175(z)* is bounded
as a mapping from L?(R"™) to D(H,) by Proposition 5.2. This completes the
proof. O

Next is the analogous result for H. This time the extension of R(z) is
meromorphic which means that in any compact subset of the complex plane
there are finitely many poles and at any pole 29, R(z) can be expanded in a
Laurent series in powers of z— 2y where the coefficients of the negative powers
are finite rank operators and only finitely many are nonzero. There is a result
sometimes known as the “analytic Fredholm” theorem about meromorphic
operators which can be stated as follows: If P(z) is an analytic operator
valued function defined for z in a connected domain Q2 C C such that P(z) is
compact for all z and (1 — P(2))™" ezists for some z € Q then (1 — P(z))™!
is meromorphic on Q. For a proof see [20, Theorem VII.1.9] or [29, Theorem
VI.14].
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Since the continuation result for R(z) involves a few technical arguments,
some motivation is appropriate. Recall, from the Example §5, that JJ* is
invertible. Expand the resolvent as

R(z) = R(z)JJ*(JJ*)*
= {JRo(2) = R(2)[HJ — JHo|Ro(2)}J*(JJ*)™!

Introducing the notation V; = HJ — JHy and K = (JJ*)~1J one has
R(2)(1 +V;Ry(2)K*) = JRy(2)K*. (6.1)

For the purpose of motivation, suppose for the moment that V; = hZQ for
some () in B and 0 < p. Multiplying on the left and right by A, in equation
(6.1), one has

huR(2)hy (1 + huQRo(2) K™ hy) = hyJ Ro(2) K™ hy,.

Suppose not only that @ is in B but K is also and that ) is Hy-compact.
Then 1+h,QRy(z) K*h, has a meromorphic inverse by the analytic Fredholm
theorem stated above, so that h,R(z)h, has a meromorphic continuation.
The most serious error in the argument is that V; # hiQ because of the
cutoffs introduced in the definition of ¢ and a. However V7 is close in operator
norm to an operator of the form hZQ. Also K is not demonstrably in B but
again it is close in operator norm.

So what is V;? It is V; = V.J + H4J — JHy and recall H J — JH, is
an operator of the form (5.7) with symbol ¢ in (2.1). The symbol ¢ can be
written as t = hy,t, +t2 where t;, ¢ are in B and ¢, is compactly supported
in & and pg > 0 is small enough. In fact for any M > 0, there is g, d > 0
so that ¢; € B(M, ). Tt will be convenient to express ¢y in terms of ¢* of
Proposition 2.1 and b of Proposition 3.1 but the explicit expression for ¢; is
omitted for brevity. The expression for #, is written in terms of an auxiliary
function t3: ty(z, &) = t5 (2, €) + t5 (T, =€) where

ty (2,6) = —(F/ko)0" (2, £)X(—c00)(REL/ ko)
+i(F/ke) (ba(@,€) = 1)X{—o0,—2) (REL/Ko)
+ Va0 (2,6) *[X{c00) (3?51/% ) = X(=o0,0)(RE1 /Ko )]
+ P(2, &) X(~o00) (3?51//%)(1 — X(=00,-2) (R€1/F0))
+V$9+(3¢,f) 0 (z ,5) X(~00,0) (%gl/“U)X(O,oo (R&1/ ko)
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where p is given by (2.2) and 0% (z,&) = ¢T(x,&) — z - & and 6~ (z,§) =
—07 (z, =£). Therefore t, is in B4. Denote the operators with symbols #;
and t, (defined by (5.7)) by Vi and V; so that HaJ — JHy = hy, Vi + Va.
Finally, it is convenient to cutoff ¢5 to be 0 if x1y > —R where R > 0 is
suitably large. Explicitly, replace ty by X(—oo,—2)(%1/R)t2(x,§) where R is
chosen so large that

[t2llm <7 (6.2)

where 7 > 0, m = 0,1,2,... are to be specified below. It is here that the
hypothesis e, > 1/2 is needed, specifically for the first term of ¢ involving
67: see Proposition 2.1 and (5.8). The remainder of ¢, can be incorporated
into h,(z1)t,. For simplicity the notations ¢; and ¢, will not be changed.

The motivational argument, two paragraphs above, can be buttressed as
follows. Provided |Sz| is large enough 1+ VoRy(2)K* is invertible so that,
from (6.1)

R(2)[1 + hu(Vi + Vo) Ro(2) K*(1 + VaRy(2) K*) ']
= JRy(2)K*(1+ VaRy(2)K*) ! (6.3)

For notational convenience it has been supposed that py = pg: re-choose g
and Vj if necessary. Now it should be possible to multiply on both sides by
hy, and solve for h,R(z)h,. This idea leads to:

Theorem 2 Suppose ey > 1/2 in the Hypotheses. Then, for any u > 0,
each of the operators

h,R(2)h,, Vi R(z)h,, h,R(z)Va and VyR(z)V,

has a meromorphic extension, from Ci to C as a bounded operator on
L*(R").

Proof. It suffices to consider the “+” (Jz > 0) case; the other case is
similar. The first concern is that K is not an operator with symbol in B so
that Proposition 5.2 is not immediately applicable in the expansion (6.3) to
conclude a meromorphic continuation. As a remedy two expansions (6.4),
(6.5) below will be derived that essentially approximate K by operators to
which Proposition 5.2 applies. Expanding K* = J*(JJ*)™! in a Neumann

series, one has
[e.e]

K =Y J*(1-JJ)
=0
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which is convergent by (5.10). It will be shown that, for any integer [ > 0
and v > 0 there exist bounded operators ), in B and Ay and p > 0 so that

J(1 =TTV, = ZQL;Jh A9iQujyr +e 1)Q2j+2A2j+1Q4j+3 (6.4)

j>1

where ||Ag|| < CLlr!) where r is the constant of (5.10) and C, does not
depend on k£ or I. Moreover, the symbols ¢, of Q; satisfy the following
bounds: for each m, ||qsjt+1||lm + ||@4j+3llm < Cm and ||qajl|m + ||gaj+2|| < Cm
where 7 is the constant of (6.2) and again C,, > 0 does not depend on [ or
j. Finally the number of terms in (6.4) is O(8'). (The Qj and A;, depend on
[, of course, although this is not indicated in the notation.)

To verify (6.4) recall that the symbol a of J decomposes as a = a4 + a,
(Corollary 4.2) so that J = J4+ J. where J4 (resp. J.) has symbol a4 (resp.
a.). For any R > 0

= J*[1 = X(—oo,—2)(X1/R)] + JS X(=00,—2) (%1 / R) + 4 X (=00,—2)(21/ R)

If one now multiplies on the right side by (1 — JJ*)'V, then the first two
terms on the right side are of the form of the operators Qj;h,A2jQ4;11 on
the right side of (6.4). (Recall from §5 that a./h,, is in B provided p > 0 is
small enough.) Consider therefore

JiX(—oor—2)(x1/R)(1 = JJ*)'Va
= TRy (@1/R) T (1 — JTY 1,

+  JaX(=o0,—2)(@1/R) (1 — J4J )1 = X(—oo—2)(x1/R)|(1 — JJ*) "'V,
+ JAX( 00r-2)(@1/R)(1 = JaJ}) X (00,2 (z1/R)(1 — JT*)'V4
+ JiX(—o0-2)(@1/R)(1 = JaT )X (~00,-2) (@1 /R) (1 = JJ*)" Vs

The first term on the right side of the above equation is already of the
form Q};h,A2jQaj11. Moreover both [[X(_co,—2)(71/R)JeJ*|| < /2 and also
|X(=00,2)(x1/R)JeJ4|| < /2, provided R > 0 is large enough because a, is
uniformly exponentially decreasing. This gives the required operator norm
estimate for this first term. Fix R. The next two terms (the second and third)
on the right side can be manipulated into the correct form (as on the the
right hand side of (6.4)) by applying Proposition 5.3 Part (a). For example
in the third term Proposition 5.3 (a) applies to J4J; (1/hy)X(—o0,~2)(z1/R)hy,
giving an expansion for the third term with the s, term commuted to the left
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in several terms and some other terms involving exp(—v(D;)). Part (b) can
then be applied to these latter terms to commute the factor exp(—v{D;)) to
the left as in (6.4). Part (b) applies because the symbol a4 is in By.

Therefore it remains only to consider the last term. Observe that this
last term differs from J%(1 — JJ*)'V5 in that, the leftmost occurrence of the
factor 1 — JJ* has been replaced by

A = )2(_007_2) (Q?l/R)(l — JA‘IZ))Z(—OO,—?) (l‘l/R)

This process of replacing factors of 1 — JJ* by A can be continued. Each
step spawns terms that have an 5, factor and Proposition 3 can be applied
repeatedly to reduce those terms to the required form (as in (6.4)). In the
end there is only one term that has not been reduced to the required form:
it is J3A'V,. The symbols of Ja, X(—co,—2)(21/R)J4 and Vs are in By so
that Proposition 5.3 can be applied repeatedly (Part (b) applies initially).
This verifies the expansion (6.4) and the number of terms grows at most
geometrically in [: O(8') say.
The same reasoning applies to show that

J A= JJYVhy =3 QZjhufZl?jQMH + 6_V<D1)Q2j+21212j+1@4j+3 (6.5)

i1

where the Q) are in B; and bounded (but not O(7) this time because there
is no Vj factor this time) and ||4;|| < C4'rl. Again there are O(8') terms.

It is now possible to derive analytic extension results for operators involv-
ing Ro(z)K* from Proposition 1 by way of the expansions (6.4) and (6.5).
More precisely let ) be an operator with symbol ¢ in B and let K be a
compact set intersecting both C'; and C'_. Then,

h@Ro(2) KV (6.6)
(resp.  h,QRo(z)K*h,) (6.7)

has an analytic extension to all of K as an operator on L?>(R™) and there are
constants C' > 0 and m € N so that

1PuQ@Ro(2) K™ V2|l < Cllgllm? (6.8)
(resp. [|huQ@Ro(2) K"hyll < Cllgllm) (6.9)
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for z in I with 7 as in (6.2) and p > 0 as in the statement of the result. For
if one replaces K* in (6.6) by its partial Neumann sum and further substi-
tutes in from (6.4) then the existence of an analytic extension follows from
Proposition 1. It remains therefore to check that the partial sum converges
uniformly on /C. The norm of the [-th term of the Neumann series is

1huQ@Ro(2) (1 = JJ*)'Val| < CCH 8!l g]lmr'7,

by (6.4). Here r is as in (5.10). Provided 8C,r < 1 then the sum over [
converges uniformly on K which shows that (6.6) has an analytic extension
and it is bounded on K as claimed in (6.8). If one now further supposes
that @ is a bounded operator from the domain D(H,) of Hy (with the graph
norm) to itself then precisely the same reasoning shows that the analytic
extension of the expression (6.6) (resp. (6.7)) is bounded as a mapping from
L*(R") to D(H,)

Return now to the case () € B is not necessarily bounded on D(Hj) and
suppose that {Sz > —v} D K for some v > 0. Then

e VPV Ry (2) K*Vy (6.10)
(resp. e "PVRy(2)K*h,) (6.11)

has an analytic extension to all of K as an operator on L?(R™) and there are
constants C' > 0 and m € N so that

le™"PPQRo()K* Vall < Cllallm? (6.12)
(resp. e PVQRy(2) K hyll < Cllallm) (6.13)

for z in K. The proof is almost identical to the proof that (6.6) has an
analytic extension with bound (6.8). It is now possible to fix the choice of r
in (5.10).

Recall the expansion (6.3) for R(z). In order to establish the result for
hyR(z)h,, multiply (6.3) on the left and right both by h, and expand both
occurrences of (1 + VoRy(2)K*)~! as a Neumann series. (The series is con-
vergent at least for Sz large enough. ) One obtains,

huR(Z)hu[l + Z Al,l(Z) + %AQJ(Z)] = Z Bl(z) (614)
where
By(2) = hyJRy(2) K*[VaRo(2) K*]'h,, (6.15)
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and, for j =1,2
A]',l(Z) = hquRo(Z)K* [‘/QRO(Z)K*]lhu (616)

where Q1 = hyh,*Vi and Qy = hy,h,?J so that Q1, Q2 € B. (It is possible
to assume 24 < ug without loss of generality.)

It will be shown that A;;(z), A2;(z) and B;(z) extend analytically in z
to all of K C C as bounded operators on L?(R™) and Aj,,(z) extends in fact
as an operator from L?*(R™) to D(H,). Moreover it will be shown that there
is a constant Cy > 0 so that

1AL ()| + [l (Ho + 8) Az (2) | + [|Bu(2) || < G (7)' (6.17)

for z € K. (The extensions are also denoted by the same symbols.) Provided
7 > 0 of (6.2) is chosen so that Cyp7 < 1 then the series of extended functions
in (6.14) converges. If it is further shown that A, ;(z) + VpAz,(2) is compact
then the result follows for h,R(z)h, by the analytic Fredholm theorem [20,
Equation VIL.1.9].

Check the compactness first. The symbol t;(x, &) of Vi goes to 0 along
with all its derivatives as |(z,£)| — oco. (x and & can be restricted to be
real here.) Therefore V; is the operator norm limit (see (5.8)) of integral
operators with compactly supported symbols (and hence Schmidt class [20])
and is therefore compact. As for VA (), since Vj is Ho-compact, it suffices
to check that J is bounded from the domain of Hy (with the graph norm) to
itself, for recall the definition @) in equation (6.16). But

JRo(i) — (H+14)"J = (Ha+ i) [HaJ — JHy| Ro(i)

where H4 = Hy+ V4 has the same domain as Hy and H 4J — J Hy is bounded
by Proposition 3.1 and so this is obvious.

Check next that A;; and B;, | € Ny 7 = 1,2 have analytic exten-
sions. This is just a matter of expressing each of them as a product of
operators of the four forms, (6.6), (6.7), (6.10) and (6.11) and bounded op-
erators that don’t depend on z. There is no difficulty here provided one
notes that the symbol of V5 has compact support in the & variable so that
Vy, = VQ[X(_R,R)(Dl)e”wl)]e_”(Dl) for R large enough and the operator in
brackets is bounded. When considering A;; we get the stronger conclusion
that the extension is bounded as an operator from L*(R") to D(H,) be-
cause J is bounded as operator from D(H,) to itself. The operator bound
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(6.17) follows from the bounds for the factors (6.8),(6.9) (6.12)(6.13). This
completes the proof of the theorem for h,R(2)h,

The proof for V; R(z)h, is very similar except for one detail. Instead of
By of the preceding argument one obtains

Bi(2) = Vi TRy (2) K*[VaRo(2) K*]'h,.

If one replaces J = J, 4 .J4 in the expansion of B(z) by J, then the argument
above for B; applies. However, when J 4 replaces J, then one additional step
is required to take advantage of the compact support in &; of t5(z, £) and that
is to apply Proposition 5.3 Part (b). Then the remainder of the argument
for By(z) is much like that for B(z). Again B; has an analytic extension and
1Bl < G (7).

It remains to consider h,R(z)V2 and Vy R(z)V,. The difference between
these two cases is much like the difference between the preceding two cases
and so it suffices to consider h,R(z)V,. Multiply through equation (6.1) by
V5 on the right and A, on the left:

huR()Va[L + X (D) Ro(2) K Vi)
= —huR(2)hu[Vi + VoJ|Ro(2) K*Va + h,JRy(2) K*V,  (6.18)
where X(_g,r) is in C§°(R) and X(—g,r)(§1) = 1 for & in the support of t,.

By the work already done, it is clear that the right side has a meromorphic
extension to all of K. Moreover

X(=r,r)(D1)Ro(2) K™V,

has an analytic extension, being of the form (6.10), and it’s operator norm
is less than 1, provided that z € K and 7 in (6.2) is chosen adequately small.
Fix 7. Therefore it is possible to solve for h,R(z)V> in (6.18) and this shows
it is meromorphic. Because v > 0 and the compact set K were arbitrary, the
result follows. a

7 Representation of the Scattering Matrix.

Theorem 1.1 is derived in this Section along with the representation (1.8)
there for the scattering matrix. This is a standard representation as appeared
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in Kuroda’s paper [25, 1973], adapted to the two Hilbert space setting as in
Isozaki and Kitada’s work [19, 1985] and further adapted to the Stark effect.
In preparation for the proof recall that the two Hilbert space wave oper-
ators W7 of (1.1) are known to exist and be complete (by the argument in
[32] (where a = 1)). In addition it can be shown that, for any v € S(R")

/ [Vye~itHoy||dt < oo (7.1)
(which implies existence of W3 by Cook’s argument [7]). This is verified in

[32] but a more direct proof can be outlined as follows. Recall the Avron-
Herbst formula [3]

—itHy __ —iF?t3/3 etz iFt2 D1 —it(—A)

€ € €

and observe that exp(—itFz;) acts by translation by ¢F units in the momen-
tum &; variable (and similarly exp(—iF't*D,) translates in the z; variable.)
Since V; = hyo(VoJ + Vi) + Vs (see (6.2)) it suffices to verify (7.1) when V;
is replaced by V2 and by h,,(VoJ + Vi). The former case is easily settled
because the symbol of V5 is compactly supported in & and so a translation
argument suffices. For the latter case when V is replaced by h,,(VoJ + V4),
it is further possible to replace V; by [X(—oo,0) + (Z1) ¥ X(—c0,0)] for some & > 1
in view of Lemma 5.1. In this case the argument is a relatively standard
stationary phase argument (as in [14, pp 70-72] for example) except that the
Fourier transform of v need not compactly supported and so a partition of
unity argument is needed as well. With this preparation it is possible to
prove Theorem 1.1.

Proof of Theorem 1.1: Begin by showing that the right hand side of
the equation (1.8) extends to a meromorphic function taking values in the
space of bounded operators on L?(R™!). Consider the first term. Since
Vi =hu(Vi + VoJ) + Vo and J = J, + J4 in the notation of the preceding
Section, the first term is (omitting the factor —2)

TO()\)J*VJTO()\)* = T()()\)J*ghuhuvlT()()\)*
+ To(A) S ghu[VoRo (9)](Ho — ©)hy JTo(A)”
+ To(N) T VaTo(A)* + To(N) 5 VaTo(V)*. (7.2)

where g € C5° is defined by h,, = ghi and 2u < pg. The first three terms
on the right hand side of (7.2) are entire by Proposition 5.2. (Note g can be
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incorporated into the symbol of J* for the application of Proposition 5.2.)
Proposition 5.2 does not immediately apply to the fourth term on the right
hand side of (7.2), but Proposition 5.3 (b) does apply because J4 and V; are
in B 4 and it brings the second term into the correct form to apply Proposition
5.2.

Next claim that the term To(A\)V;R(A +140)V;T5(N)* in (1.8) has a mero-
morphic extension. As above, it is convenient to expand V; as

Vi = huhugVi + hulgVoRo(9)](Ho — 9)hyJ + Vo

and similarly for V;. Then it is simply a matter of applying Theorem 6.2
and Proposition 5.2. Thus the right hand side of (1.8) has a meromorphic
extension.

It remains to establish (1.8). The argument here is similar to that of
Isozaki and Kitada’s [19, Theorem 3.3]. Begin by considering the L? inner
product ((S-1)u,v) for u and v in fundamental subsets of L?(R"). (A subset is
fundamental if its linear span is dense.) Specifically, suppose that v € S(R™)
and for some bounded real interval (a,b), v = Ey(a,b)v where Ej is the
spectral measure of Hy,. That all such states form a fundamental subset
follows by considering the set’s image under the spectral representation U. As
for u, let u; be in the same fundamental subset as v and for some m = 1,2, .. .,
let u = e~ {P1)/my, .

Expand S — 1 = (W)*(W; — W;). (Recall WF are isometries [32,
Theorem 2.1].) On the other hand,

Foo | .
(W3 — JJu = Z/ e BV e oy dt
0

(for integrate and differentiate). The integral exists absolutely according to
the opening remarks of this Section. By the Intertwining Principle [30]

(S —Du,v) = —i /Oo (Ve tHoy W e "Hoy) dt
= T +7;S2
where
. = —i /O:O(VJe_itHou, Je~"Hoy) dt
T, = —/o:o /OOO(VJe_itHOu, eiSHVJe_i(sJ’t)HOv) ds dt.
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Consider first T5:

T, = — lim / / e~ e TV s HY et oy o~ ilstHoy) s it
—00 JO

o, 7—0+

9] 00
= — lim / / e %%
o,7—=0+ J o JO

b . .
/ (Ty(\) Ve BH-N Y, e=itHo=Ny Ty (\)p) dA ds di

by (5.4). (Recall To(A)V; is bounded by Lemma 5.1.) Recall the identity
/ e~ e BH-N s = _iR(\ + i0)
0

in the strong operator topology (which is comparable to a Laplace transform;
see [20, §9.1.3] for example). Therefore

b

T, = (}_}i_rgpr j (To(M)VFR(A +i0)Vi[Ro(A + i) — Ro(A — i7)]u, To(A)v) dA.
It is possible to evaluate the limit 7 — 04 by applying Proposition 6.1. It
is for this application, that the choice of u = e~{P1/™y, is convenient. (The
conclusion of Proposition 6.1 is valid when either );, j = 1 or 2, there is
replaced by the identity operator; the proof is very similar.) The limit as
o — 0+ exists according to Theorem 6.2 so that

T, = 2mi / "(Ty VIR + 10)VyTy(A) To (A, To(A)v) dA

Thus T), corresponds to the second term on the right side of (1.8).
Similar reasoning shows that 7} is
b
Tl = — lim (T()(/\)J*VJ[R()()\ + 27') — Ro()\ — ’I:T)]U, T()(A)’U) d\

70+ Jq
b
= —2ni [ (TN T ViTo(\) To(Nu, To(N)v) dA
so that T} corresponds to the first term on the right side of of (1.8). Equation
(1.8) follows from the uniqueness of the Radon Nikodym derivative almost

everywhere and because the u, v belong to a fundamental set. a
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A Appendix

Proofs of Lemmas 2.2, 3.2 and 3.3 are given.

Proof of Lemma 2.2. Let I denote the integral expression in the state-
ment of the Lemma. Neglecting those terms in the integrand which are linear
in t, one arrives at the estimate:

. [0 a .
I < a—lc-l—l/QC—j/ (1 +t2)_k(1 + _t2)—3 dt
0 c
after a change of variable. Now assume a/c > 1:

I < *+1/2ed / (1 +£2)741 gt
0

The integral expression on the right side can be expressed in terms of the
Beta function [1, p. 258] (after a trigonometric substitution): it is B(1/2, k+
j—1/2)/2. Tt is known that v/IB(1/2,1) is bounded uniformly on any interval
of the form [ > €. (for expand B in terms of gamma functions and apply
Stirling’s formula). This implies the present result in the case a > c. Inter-
changing the roles of a and ¢, k and j, a symmetric argument completes the
proof of part (a).

It remains to consider part (b) when a < ¢ so that b > /¢, because
¢ = (a + b?)/2. If one ignores the terms in the integrand of I which are
quadratic in ¢,

I

IN

c’j/ch“l(?b)*l /00(1 n %t),j/g(l + t)’kdt
0
< IR 2D M (R - 1)

after a change of variable. This proves part (b), since b > \/c. O
Proof of Lemma 3.2. From the expression (3.9) for z(t)

1Rz, (1) > —Ryy, — 2Rt + Ft* — Cyt

for some constant Cy > 0 by (2.7). Therefore, in the case that —Rn; > Cp/2
the present Lemma follows from Lemma 2.2 (with b = Rn; — Cp/2 there).
It is possible to assume therefore that |Rn;| is bounded. In this case a shift
of variables argument in the integral brings it into the correct form to apply
Lemma 2.2 and derive the required estimates. O
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Proof of Lemma 3.3. In view of Lemma 3.2 it suffices to show that
lim [ q(w(t,y,m), €(tm) dt = 0
[(yL,mL)|—o0 JO

(because j' < j.) The tail of the integral is, for any h > 0

o0

[ aat ) €t m)dt= [T Gty o) €t ) dt

where y' = z(h,y,n) and 7' = £(h,n) since z(t) and £(t) are solutions of an
autonomous system. Therefore Lemma 3.2 implies that this tail can be made
small by choosing h large and it is small uniformly in (y,,n,). Fix h. It
remains to show

1

lim q(z(th,y,n),&(th,n)) dt = 0. (A.1)

I(yLmL)|l—o0 JO
Distinguish two cases: First, the case n, is small, say |n.| < |y.|/3h. Then
|(z1 (th,y,n),n.(th,n))| gets large as |(y.,n. )| does by equation (3.9) and so
(A.1) follows simply because g(z,£) — 0 as |(z1,£.)| — oco. In the second

case, when |n,| is large, z (th,y,n) cannot stay within any bounded region
for more than a very short time: for 0 <7 <t <1

|1 (th,y,n) — 1 (Th,y,n)| = hlt = 7|(2In.| = C)

for some constant C' by (3.9). This implies (A.1) in this case as well. O
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