
7.1 Natural Logarithm:

Recall:

• If f(x) > 0 then
∫ b
a f(x) dx is the area under the graph y = f(x), a ≤ x ≤ b.

•
∫

xndx = provided n 6= −1.

• The Fundamental Theorem of Calculus: Part 1:
d

dx

∫ x

a
f(t) dt =

• The Fundamental Theorem of Calculus: Part 2:
∫ b

a

d

dx
f(x) dx =

Definition: The Natural Logarithm Function ln x is defined for x > 0 by:

ln x =
∫ x

1

1

t
dt for x > 0.

Therefore ln x is the area under the graph of y = 1/t if x > 1 and negative that area
if x < 1 and ln 1 = . Furthermore

d

dx
ln x =

1

x

Example Find the derivative of ln(3x+ 1).

Remark: In Section 1.6 the textbook has introduced the ln x function as the inverse
of the function ex. We will see that the two definitions really are equivalent. The
advantage of the defintion in 1.6 is that we can study the transcendental functions along
with calculus: hence the “Early Transcendentals in the title of the text. The advantage
of the present defintion is that is gives clear and coherent basis for studying all logarithm
and exponential functions so that the properties can be most easily derived.

Properties of ln x:
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1.
d

dx
ln u =

1

u

du

dx

2. ln(xy) = ln x+ ln y

3. ln(x/y) = ln x− ln y

4. ln xr = r ln x if r is a fraction.

Verification of 1: Show ln(ab) = ln a+ ln b.

ln(ab) =
∫ ab

1

1

t
dt =

∫ a

1

1

t
dt+

∫ ab

a

1

t
dt

=
∫ a

1

1

t
dt+

∫ b

1

1

u
du

= ln a+ ln b

where in the second integral on the right we substitute u = t/a, du = dt/a.
Verification of 2: See text.
Idea for 3: Special Case r = 3: ln(x3) = 3 ln x for ln x3 = ln x + ln x2 by 1 and so

ln x3 = ln x+ ln x+ ln x by 1 again.
Second case r = 1/4: ln(x1/4) = (ln x)/4 because ln y4 = 4 ln y and choose y = x1/4.

Example; Calculate
d

dx
ln |x|

Solution:

ln |x| =

{

ln x if x > 0
ln(−x) if x < 0

So if x > 0,
d

dx
ln |x| =

d

dx
ln x =

1

x
but if x < 0, then

d

dx
ln |x| =

d

dx
ln(−x) =

1

−x
(−1).

Conclude
d

dx
ln |x| =

1

x

Integration of Power Functions:

∫

xn dx =

{

1
n+1

xn+1 + C if n 6= −1

ln |x|+ C if n = −1

Example: Compute
∫ x2

x3 + 1
dx.

Solution:
∫ x2

x3 + 1
=

1

3
ln |x3 + 1|+ C

Example: Compute
∫

tan x dx.

Solution:
∫ sin x

cos x
dx = −

∫ 1

u
du where u = cosx so that du = sin xdx. This last

expression is − ln |u|+ C.

∫

tan x dx = − ln | cos x|+ C = ln | sec x|+ C



3

Check by differentiation:
d

dx
(− ln | cos x|) = tan x.

Similarly
∫

cot x dx = ln | sin x|+ C.

More Properties of ln x:

• ln x is increasing for x > 0 because
d

dx
ln x =

1

x
. So ln x is one-to-one.

• limx→∞ ln x = ∞ because ln 2r = r ln 2 and let r → ∞.

• limx→0 ln x = −∞ because ln(1/x) = − ln x.

It follows that ln x is an increasing function d/dx(ln x) = 1/x > 0 (and so is “1–1”)
that maps the open interval (0,∞) to the entire real line.

Definition: We introduce the number e defined to be the unique number so that
ln e = 1 (ln x takes on every real value once and only once).

e = 2.718281828459 . . .

By the properites of logarithms, for any rational number r

ln[er] = r ln e = r

We can now proceed just as the text did in Chapter 1. Because ln x is 1–1 it has an
inverse function which we call E(x), for the moment. The E(ln x) = x and ln(E(x)) = x.
The latter property assures that E(r) = er for every rational exponent r. However E(x)
is defined for all x and so we define ex = E(x)

Definition: Define the natural exponential exp(x) to be the inverse of ln x.

exp(ln x) = x; ln(exp x) = x

With x = 1, exp(0) = 1 and with x = e, exp(1) = e and with x = e3, exp(3) = e3. In
general exp(r) = er for r rational and we write exp(x) = ex for all real x.

Graph:

Properties:
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1. elnx =

2. ln ex =

3. e0 =

4. ex+y = exey

5. e−x =
1

ex

6. (ex)r = erx

7.
d

dx
ex =

8. ex > 0 for all x

9. limx→∞ ex = ∞

10. limx→−∞ ex = 0

Verification of 4. Since ln is a one-to-one function it suffices to show that ln(ex+y) =
ln(exey). But ln(ex+y) = x + y by 2. And ln(exey) = ln(ex) + ln(ey) by one of the
properties of ln. Applying Property 2, ln(ex) + ln(ey) = x + y. Verification of 7. We
know that ex is differentiable because its inverse ln x is differentiable with derivative 1/x
which is nonzero. Differentiate in 2.

d

dx
ln(ex) =

d

dx
x

1

ex
d

dx
ex = 1

so that
d

dx
ex = ex

or incorporating the chain rule:
d

dx
eu = eu

du

dx
.

Example: If f(x) = ex
2+3x then f ′(x) = (2x+ 3)ex

2+3x

Example: Evaluate
∫

ex
2

x dx. Substitute u = x2 ...
∫

ex
2

x dx = (1/2)ex2 + C
General Logarithms and Exponential:

Observe that 2 = eln 2 so that for any rational x 2x = ex ln 2.
Definition: For a > 0 ax = ex ln a.
For example 2x ∼ e(0.69314718)x. Therefore

d

dx
ax = (ln a)ax
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Example:
d

dx
10x = (ln 10)10x ∼ (2.3025851)10x.

Example:
d

dx
10sinx = (ln 10)10sinx cos x.

Example:
d

dx
[ex + xe] = ex + exe−1

Graphs: Graph 2x, ex and 10x on one set of axes.

Example: Evaluate
∫

2x
2+6x(x+3) dx. Substitute u = x2+6x so that du = (2x+6)dx.

Definition: logax is the inverse ax:

aloga x = x loga(a
x) = x

Remark: loga x =
ln x

ln a
. In particular log10 x ∼

ln x

2.3025851
.

Examples: Evaluate
∫ log2 x

x
dx =

1

ln 2

∫ ln x

x
dx Substitute u = ln x.

∫ log2 x

x
dx =

1

2 ln 2
(ln x)2 + C


