5.6 Area Between Curves:

Recall integration by substitution. $\int \sin(x^2) 2x \, dx = ?$.

Also recall that the definite integral $\int_a^b f(x) dx$ of a nonnegative function $f : [a, b] \to \mathbb{R}$ is the area under the graph but above the x-axis. What is $\int_a^b f(x) dx$ when f is non-positive?

As an introductory application of integration we pursue the idea of finding areas. Recall that areas were a motivation for defining Riemann sums and definite integrals in §5.1 and §5.3. $(\int_a^b f(x) dx \approx \sum_{k=1}^n f(c_k) \Delta x_k)$ **Example:** (a) Find the area enclosed between the curve $y = 9 - x^2$ and the x-axis.

Example: (a) Find the area enclosed between the curve $y = 9 - x^2$ and the x-axis. (b) Find the area enclosed between the curve $y = 9 - x^2$ and the line y = 5.

Solution: Sketch the curve. It is a parabola opening down shifted up 9 units. It intersects the x-axis (y = 0) at $x = \pm 3$.

(a) The area between the parabola and the x-axis is

$$\int_{-3}^{3} 9 - x^2 \, dx = 9x - \frac{x^3}{3} \Big|_{-3}^{3} = 27 - \frac{27}{3} - \frac{(-27 + \frac{27}{3})}{(-27 + \frac{27}{3})} = 36$$

(b) The area between the parabola and the horizontal line y = 5 is

$$\int_{-2}^{2} 9 - x^2 - 5 \, dx = 4x - \frac{x^3}{3} \Big|_{-2}^{2} = 8 - \frac{8}{3} - (-8 + \frac{8}{3}) = \frac{32}{3}$$

Formula. The area bounded by the two curves y = f(x) and y = g(x) between $a \le x \le b$ is

$$\int_{a}^{b} \left| f(x) - g(x) \right| dx$$

Example: Find the area enclosed by the two curves $y = 3x^2$ and $y = x^2 + 18$. Solution: Sketch the two curves. We will need the points of intersection of the two curves. Set $3x^2 = x^2 + 18$: $2x^2 - 18 = 0$ or (x - 3)(x + 3) = 0 so that $x = \pm 3$ where y = 27. The area is the area beneath the higher curve $y = x^2 + 18$, $-3 \le x \le 3$ minus the area beneath the curve $y = 3x^2$, $-3 \le x \le 3$:

$$\int_{-3}^{3} x^2 + 18 - 3x^2 \, dx = \int_{-3}^{3} 18 - 2x^2 \, dx = 18x - \frac{2}{3}x^3|_{-3}^3 = 54 - \frac{2}{3}27 - (-54 - \frac{2}{3}(-27)) = 72$$

The area is 72 square units.

Example: Find the area enclosed by the two curves y = x and $y = x^3$. Solution: Sketch the two curves.

Find the intersections: $x^3 = x$ or x(x-1)(x+1) = 0. Three intersections x = 0 and $x = \pm 1$. According to our formula the area is

$$\int_{-1}^{1} |x^3 - x| \, dx$$

That can be evaluated by checking when the expression inside the $|\cdot|$ signs is zero and breaking up the integral accordingly.

$$\int_{-1}^{1} |x^{3} - x| \, dx = \int_{-1}^{0} |x^{3} - x| \, dx + \int_{0}^{1} |x^{3} - x| \, dx = \int_{-1}^{0} x^{3} - x \, dx - \int_{-1}^{0} x^{3} - x \, dx$$

The area is therefore

$$\int_{-1}^{0} x^3 - x \, dx - \int_{-1}^{0} x^3 - x \, dx = \frac{x^4}{4} - \frac{x^2}{2}\Big|_{-1}^{0} - \frac{[x^4}{4} - \frac{x^2}{2}\Big]_{-1}^{0} = \frac{1}{4} - \frac{[-1/4]}{4} = \frac{1}{2}$$

Of course it would be possible to use symmetry but care must be taken.

Example: Find the area enclosed by the curves $x = y^2 - y$ and y = x - 3. Solution: Sketch the curves. They intersect when $y^2 - y = y + 3 (y - 3)(y + 1) = 0$ so that y = -1 or y = 3. The area is

$$\int_{-1}^{3} |y+3-(y^2-y)| \, dy = \int_{-1}^{3} 2y+3-y^2 \, dy$$

because the integrand does not change sign inside the interval of integration. Evaluate

$$\int_{-1}^{3} 2y + 3 - y^2 \, dy = y^2 + 3y - y^3/3|_{-1}^{3} = 9 + 9 - 27/3 - (1 - 3 + 1/3) = 32/3$$