5 Integration

We now begin the second branch of calculus, integral calculus; the first branch was differential calculus. We start by trying to solve two different physical problems that motivate integral calculus.

5.1 Areas and Distances:

1. Area: We want to find the area of irregularly shaped regions in the plane. To start with we shall look at the area beneath the graph of a function $f(x) \ a \le x \le b$ which is only irregular on one side. Our point of departure is the notion of the area of a rectangle and that the area of two disjoint regions is the sum of the areas of the two areas.

Example: To begin with let us find the area (at least approximately) beneath the curve

$$y = 1 + 2x - x^2, \quad 0 \le x \le 2$$

but above the *x*-axis.

Solution: We approximate the area A. The region in question is contained in the box $0 \le x \le 2$ and $0 \le y \le 2$ and so it is at most 4: $A \le 4$ It also contains the box $0 \le x \le 2$ and $0 \le y \le 1$ and so $A \ge 2$. We can do better than this by subdividing the *x*-interval $0 \le x \le 2$ into small pieces.

If we divide it into 4 pieces for example then we can approximate the area of each piece of the region $0 \le x \le 1/2$, $1/2 \le x \le 1$, $1 \le x \le 3/2$ and $3/2 \le x \le 2$. The inscribed boxes have area $1/2 \times 1 = 1/2$, $1/2 \times 7/4 = 7/8$, $1/2 \times 7/4 = 7/8$ and $1/2 \times 1 = 1/2$ so that

$$\frac{1}{2} + \frac{1}{2}\frac{7}{4} + \frac{1}{2}\frac{7}{4} + \frac{1}{2} \le A \quad (11/4 \le A)$$

The circumscribed boxes have total area

$$A \le \frac{1}{2}\frac{7}{4} + \frac{1}{2}2 + \frac{1}{2}2 + \frac{1}{2}\frac{7}{4} = \frac{15}{4}$$

Next we divide the interval $0 \le x \le 2$ into 8 equal pieces. (There is no reason to stick to even numbers but it does reduce the number of computations we need.) Then A is larger than the sum of the areas of the 8 inscribed boxes

$$\begin{aligned} &\frac{2}{8}f(0) + \frac{2}{8}f(1/4) + \frac{2}{8}f(1/2) + \frac{2}{8}f(3/4) + \frac{2}{8}f(5/4) + \frac{2}{8}f(3/2) + \frac{2}{8}f(7/4)\frac{2}{8}f(2) \\ &= \frac{1}{4}(1 + \frac{23}{16} + \frac{7}{4} + \frac{31}{16} + \frac{31}{16} + \frac{7}{4} + \frac{23}{16} + 1) = \frac{49}{16} \end{aligned}$$

and smaller than the area of the 8 circumscribed boxes:

$$\frac{2}{8}f(1/4) + \frac{2}{8}f(1/2) + \frac{2}{8}f(3/4) + \frac{2}{8}f(1) + \frac{2}{8}f(1) + \frac{2}{8}f(5/4) + \frac{2}{8}f(3/2) + \frac{2}{8}f(7/4)$$
$$= \frac{1}{4}(\frac{23}{16} + \frac{7}{4} + \frac{31}{16} + 2 + 2 + \frac{31}{16} + \frac{7}{4} + \frac{23}{16}) = \frac{57}{16}$$

Therefore

$$\frac{49}{16} \le A \le \frac{57}{16}$$

If we divide the interval $0 \leq x \leq 2$ into 16 equal pieces then the sum of the areas of the inscribed boxes is

$$\begin{aligned} &\frac{2}{16}[f(0) + f(1/8) + f(2/8) + f(3/8) + f(4/8) + f(5/8) + f(6/8) + f(7/8) \\ &+ f(9/8) + f(10/8) + f(11/8) + f(12/8) + f(13/8) + f(14/8) + f(15/8) + f(16/8)] \\ &= \frac{1}{8}[1 + \frac{81}{64} + \frac{23}{16} + \frac{103}{64} + \frac{7}{4} + \frac{119}{64} + \frac{31}{16} + \frac{127}{64} + \frac{127}{64} + \frac{31}{16} + \frac{119}{64} + \frac{7}{4} + \frac{103}{64} + \frac{23}{16} + \frac{81}{64} + 1] \\ &= \frac{205}{64} \end{aligned}$$

whereas the total area of the circumscribed boxes is

$$\begin{aligned} &\frac{2}{16}[f(1/8) + f(2/8) + f(3/8) + f(4/8) + f(5/8) + f(6/8) + f(7/8) + f(1) \\ &+ f(1) + f(9/8) + f(10/8) + f(11/8) + f(12/8) + f(13/8) + f(14/8) + f(15/8)] \\ &= \frac{1}{8}[\frac{81}{64} + \frac{23}{16} + \frac{103}{64} + \frac{7}{4} + \frac{119}{64} + \frac{31}{16} + \frac{127}{64} + 2 + 2 + \frac{127}{64} + \frac{31}{16} + \frac{119}{64} + \frac{7}{4} + \frac{103}{64} + \frac{23}{16} + \frac{81}{64}] \\ &= \frac{221}{64} \end{aligned}$$

so that

$$3.203 \approx \frac{205}{64} \le A \le \frac{221}{64} \approx 3.453$$

The correct area is 10/3 = 3.33333.

What we are to learn is that the area between the curve y = f(x) and above the x-axis and for $a \le x \le b$ can be approximated by a sum of areas of rectangles.

$$A \approx f(x_1^*)\Delta x + f(x_2^*)\Delta x + f(x_3^*)\Delta x + \ldots + f(x_n^*)\Delta x$$

where

$$\Delta x = \frac{b-a}{n}$$

and x_i^* is any point in the *i*th subinterval $[x_{i-1}, x_i]$, $1 \le i \le n$ and $x_0 = a$, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, $\ldots x_n = a + n\Delta x = b$.

2.	Distance.	How	far	does	the	car	go	if	the	vel	locity	is	
----	-----------	-----	-----	------	-----	----------------------	----	----	-----	-----	--------	----	--

time (min.)	$0 \le t \le 15$	$15 \le t \le 30$	$30 \le t \le 45$	$45 \le t \le 60$
velocity (m.p.h.)	28	46	54	60
time (min.)	$60 \le t \le 75$	$75 \le t \le 90$	$90 \le t \le 105$	$105 \le t \le 120$
velocity (m.p.h.)	66	68	64	62

Then the distance traveled is approximately

$$s \approx \frac{1}{4}28 + \frac{1}{4}46 + \frac{1}{4}54 + \frac{1}{4}60 + \frac{1}{4}66 + \frac{1}{4}68 + \frac{1}{4}64 + \frac{1}{4}62 = 112$$

Distance traveled during the time interval $a \leq t \leq b$

$$s \approx v(t_1^*)\Delta t + v(t_2^*)\Delta t + v(t_3^*)\Delta t + \ldots + v(t_n^*)\Delta t$$

where $\Delta = (b-a)/n$ and t_i^* is any time in the *i*th subinterval $[t_{i-1}, t_i]$ $1 \le i \le n$ and where $t_0 = a, t_1 = a + \Delta t, t_2 = a + 2\Delta t \dots t_n = a + n\Delta t = b$.

5.3 Definition of the Definite Integral: Suppose the f(x) is defined on an interval $a \le x \le b$. Suppose that we have a subdivision (or partition) \mathcal{P} of the interval

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

into *n* subintervals, $[x_0, x_1]$, $[x_1, x_2]$, ..., $[x_{i-1}, x_i]$, ..., $[x_{n-1}, x_n]$. Define the heights of the circumscribed and inscribed boxes

$$M_i = \max\{f(x) : x_{i-1} \le x \le x_i\} \quad m_i = \min\{f(x) : x_{i-1} \le x \le x_i\}$$

Define the lower Riemann sum and upper Riemann sum

$$L(f, \mathcal{P}) = m_1(x_1 - x_0) + m_2(x_2 - x_1) + m_3(x_3 - x_2) + \ldots + m_n(x_n - x_{n-1})$$

$$U(f, \mathcal{P}) = M_1(x_1 - x_0) + M_2(x_2 - x_1) + M_3(x_3 - x_2) + \ldots + M_n(x_n - x_{n-1}).$$

(These are the total areas of the inscribed boxes $(L(f, \mathcal{P}))$ and of the circumscribed $(U(f, \mathcal{P}))$). Suppose that there is one and one only one number A so that

$$L(f, \mathcal{P}) \le A \le U(f, \mathcal{P})$$

for all partitions \mathcal{P} . Then f is said to be *Riemann integrable* and we denote

$$A = \int_{a}^{b} f(x) \, dx$$

Interpretation: (a) If $f(x) \ge 0$ then $\int_a^b f(x) dx$ is the area under the y = f(x), $a \le x \le b$. (b) If v(t) is the velocity of a particle traveling along a straight line then $\int_a^b v(t) dt$ is the displacement between time t = a and t = b. (For example if $\int_a^b v(t) dt = 11$ then the particle moves 11 units to the right during thet time interval $a \le t \le b$.)

Theorem. If f(x) is continuous $a \le x \le b$ then f(x) is Riemann integrable and

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \frac{b-a}{n} [f(x_1^*) + f(x_2^*) + f(x_3^*) + f(x_4^*) + \dots + f(x_n^*)]$$

no matter what the choice of x_i^* , provided $(i-1)(b-a)/n \le x_i^* - a \le i(b-a)/n$ (that is x_i^* is in the *i*th subinterval.)

Example: Use Riemann sums and 16 subintervals to approximate $\int_0^2 f(x) dx$

$$f(x) = 1 + 2x - x^2, \quad 0 \le x \le 2$$

Solution: Recall that a general Riemann sum is

$$\int_{a}^{b} f(x) dx = \approx f(x_1^*) \Delta x + f(x_2^*) \Delta x + f(x_3^*) \Delta x + \dots + f(x_{n-1}^*) \Delta x + f(x_n^*) \Delta x$$

and so, if we take the interval length to be $\Delta x = (b-a)/n$ and factor is out we have

$$\int_{a}^{b} f(x) \, dx \approx \left(\frac{b-a}{n}\right) \left[f(x_{1}^{*}) + f(x_{2}^{*}) + f(x_{3}^{*}) + \dots + f(x_{n-1}^{*}) + f(x_{n}^{*})\right]$$

For this problem we take n = ?; a = 0, b = 2, $f(x) = 1 + 2x - x^2$. We shall use the midpoint rule which is usually the more accurate rule $(x_i^* = (x_{i-1} + x_i)/2)$

$$\int_{a}^{b} f(x) dx \approx \left(\frac{2}{16}\right) \left[f(1/16) + f(3/16) + f(5/16) + \dots + f(31/16)\right]$$

= $\left(\frac{1}{8}\right) \left[\frac{287}{256} + \frac{343}{256} + \frac{391}{256} + \frac{431}{256} + \frac{463}{256} + \frac{487}{256} + \frac{503}{256} + \frac{509}{256} + \frac{509}{256} + \frac{509}{256} + \frac{487}{256} + \frac{463}{256} + \frac{431}{256} + \frac{391}{256} + \frac{343}{256} + \frac{287}{256}\right] = \frac{3414}{1024}$
\approx 3.3339844

By our earlier work we found that

$$3.203 \le \int_0^2 1 + 2x - x^2 \, dx \le 3.453$$

The correct answer is 10/3.

Example: Evaluate the integral $\int_1^3 1 + 2x \, dx$ by interpreting it in terms of area. **Solution:** Sketch y = 1 + 2x This is a rectangle angle surmounted by a triangle so that the area is 6 + 4 = 10.

Properties of the Definite Integral:

(1) $\int_{a}^{b} c \, dx = c(b-a)$ (2) $\int_{a}^{b} f(x) \pm g(x) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx$ (3) $\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx$ (4) $\int_{b}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx$ (5) $\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$ (6) If $f(x) \ge 0$ the $\int_{a}^{b} f(x) \, dx \ge 0$

Physical interpretation of $\int_a^b f(x) dx$:

If $f(x) \ge 0$ on the entire interval $a \le x \le b$ then $\int_a^b f(x) dx$ is simply the area beneath the graph y = f(x) and above the x-axis, $a \le x \le b$. If $f(x) \le 0$ on the entire interval $a \le x \le b$ then $\int_a^b f(x) dx$ is simply the area beneath the graph times (-1). If f(x)changes sign on the interval then the area is: (picture)

so that the regions above the axis count positive and below the axis count negative.