
5 Integration

We now begin the second branch of calculus, integral calculus; the first branch was
differential calculus. We start by trying to solve two different physical problems that
motivate integral calculus.

5.1 Areas and Distances:

1. Area: We want to find the area of irregularly shaped regions in the plane. To start
with we shall look at the area beneath the graph of a function f(x) a ≤ x ≤ b which is
only irregular on one side. Our point of departure is the notion of the area of a rectangle
and that the area of two disjoint regions is the sum of the areas of the two areas.

Example: To begin with let us find the area (at least approximately) beneath the
curve

y = 1 + 2x− x2, 0 ≤ x ≤ 2

but above the x-axis.
Solution: We approximate the area A. The region in question is contained in the

box 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 and so it is at most 4: A ≤ 4 It also contains the box
0 ≤ x ≤ 2 and 0 ≤ y ≤ 1 and so A ≥ 2. We can do better than this by subdividing the
x-interval 0 ≤ x ≤ 2 into small pieces.

If we divide it into 4 pieces for example then we can approximate the area of each piece
of the region 0 ≤ x ≤ 1/2, 1/2 ≤ x ≤ 1, 1 ≤ x ≤ 3/2 and 3/2 ≤ x ≤ 2. The inscribed
boxes have area 1/2× 1 = 1/2, 1/2× 7/4 = 7/8, 1/2× 7/4 = 7/8 and 1/2× 1 = 1/2 so
that
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Next we divide the interval 0 ≤ x ≤ 2 into 8 equal pieces. (There is no reason to stick
to even numbers but it does reduce the number of computations we need.) Then A is
larger than the sum of the areas of the 8 inscribed boxes
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and smaller than the area of the 8 circumscribed boxes:
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If we divide the interval 0 ≤ x ≤ 2 into 16 equal pieces then the sum of the areas of the
inscribed boxes is
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whereas the total area of the circumscribed boxes is
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so that
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The correct area is 10/3 = 3.33333.
What we are to learn is that the area between the curve y = f(x) and above the x-axis

and for a ≤ x ≤ b can be approximated by a sum of areas of rectangles.

A ≈ f(x∗
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n
and x∗
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is any point in the ith subinterval [xi−1, xi], 1 ≤ i ≤ n and x0 = a, x1 = a+∆x,

x2 = a+ 2∆x, . . .xn = a+ n∆x = b.
2. Distance. How far does the car go if the velocity is

time ( min.) 0 ≤ t ≤ 15 15 ≤ t ≤ 30 30 ≤ t ≤ 45 45 ≤ t ≤ 60
velocity (m.p.h.) 28 46 54 60
time ( min.) 60 ≤ t ≤ 75 75 ≤ t ≤ 90 90 ≤ t ≤ 105 105 ≤ t ≤ 120
velocity (m.p.h.) 66 68 64 62

Then the distance traveled is approximately
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Distance traveled during the time interval a ≤ t ≤ b

s ≈ v(t∗
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where ∆ = (b − a)/n and t∗
i
is any time in the ith subinterval [ti−1, ti] 1 ≤ i ≤ n and

where t0 = a, t1 = a+∆t, t2 = a+ 2∆t . . . tn = a+ n∆t = b.
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5.3 Definition of the Definite Integral: Suppose the f(x) is defined on an interval
a ≤ x ≤ b. Suppose that we have a subdivision (or partition) P of the interval

a = x0 < x1 < x2 < . . . < xn−1 < xn = b

into n subintervals, [x0, x1], [x1, x2], . . . , [xi−1, xi], . . . , [xn−1, xn]. Define the heights of
the circumscribed and inscribed boxes

Mi = max{f(x) : xi−1 ≤ x ≤ xi} mi = min{f(x) : xi−1 ≤ x ≤ xi}

Define the lower Riemann sum and upper Riemann sum

L(f,P) = m1(x1 − x0) +m2(x2 − x1) +m3(x3 − x2) + . . .+mn(xn − xn−1)

U(f,P) = M1(x1 − x0) +M2(x2 − x1) +M3(x3 − x2) + . . .+Mn(xn − xn−1).

(These are the total areas of the inscribed boxes (L(f,P)) and of the circumscribed
(U(f,P)). Suppose that there is one and one only one number A so that

L(f,P) ≤ A ≤ U(f,P)

for all partitions P . Then f is said to be Riemann integrable and we denote

A =
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Interpretation: (a) If f(x) ≥ 0 then
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a
f(x) dx is the area under the y = f(x),

a ≤ x ≤ b. (b) If v(t) is the velocity of a particle traveling along a straight line
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v(t) dt is the displacement between time t = a and t = b. (For example if
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a ≤ t ≤ b.)
Theorem. If f(x) is continuous a ≤ x ≤ b then f(x) is Riemann integrable and

∫

b

a

f(x) dx = lim
n→∞

b− a

n
[f(x∗

1
) + f(x∗

2
) + f(x∗

3
) + f(x∗

4
) + . . .+ f(x∗

n
)]

no matter what the choice of x∗

i
, provided (i− 1)(b− a)/n ≤ x∗

i
− a ≤ i(b− a)/n (that

is x∗

i
is in the ith subinterval.)

Example: Use Riemann sums and 16 subintervals to approximate
∫
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f(x) dx

f(x) = 1 + 2x− x2, 0 ≤ x ≤ 2

Solution: Recall that a general Riemann sum is
∫
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and so, if we take the interval length to be ∆x = (b− a)/n and factor is out we have
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For this problem we take n =?; a = 0, b = 2, f(x) = 1 + 2x − x2. We shall use the
midpoint rule which is usually the more accurate rule (x∗

i
= (xi−1 + xi)/2)
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By our earlier work we found that

3.203 ≤

∫

2

0

1 + 2x− x2 dx ≤ 3.453

The correct answer is 10/3.

Example: Evaluate the integral
∫

3

1
1 + 2x dx by interpreting it in terms of area.

Solution: Sketch y = 1 + 2x This is a rectangle angle surmounted by a triangle so
that the area is 6 + 4 = 10.

Properties of the Definite Integral:
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(6) If f(x) ≥ 0 the
∫
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Physical interpretation of
∫

b

a
f(x) dx:

If f(x) ≥ 0 on the entire interval a ≤ x ≤ b then
∫

b

a
f(x) dx is simply the area beneath

the graph y = f(x) and above the x-axis, a ≤ x ≤ b. If f(x) ≤ 0 on the entire interval

a ≤ x ≤ b then
∫

b

a
f(x) dx is simply the area beneath the graph times (-1). If f(x)

changes sign on the interval then the area is: (picture)

so that the regions above the axis count positive and below the axis count negative.


