4.8. Antiderivatives

Example: If f'(x) = 2x then what is f(x)? Clearly $f(x) = x^2$ works but so does $f(x) = x^2 + 11$ In fact f(x) is not completely determined by its derivative and we write $f(x) = x^2 + C$ where C is a constant that is unknown. Therefore there are infinitely many solutions to our problem, one for every real number C. Are there any others?

Uniqueness: Suppose g'(x) = 0 for all x in an interval. What is g? By the mean value theorem if a < b are any two numbers in the interval. then

$$\frac{g(b) - g(a)}{b - a} = g'(c) = 0$$

so that g(b) = g(a). Since a < b was arbitrary this says that g(x) is constant g(x) = C on the interval.

Therefore if two functions f(x) and h(x) have the same derivative: f'(x) = h'(x) on an interval then they differ by f(x) - h(x) = g(x) = C because g'(x) = f'(x) - h'(x) = 0.

Example: Find the (most general) antiderivative of f'(x) = 2x.

Solution: $f(x) = x^2 + C$.

Example: Find the antiderivative of

1. x^3

Solution: The antiderivative is $\frac{1}{4}x^4 + C$. Check by differentiation.

$$\frac{d}{dx}x^4 = 4x^3$$

divide by 4 and move the 1/4 inside the differentiation sign.

2. x^7

Solution: The antiderivative is $\frac{1}{8}x^8 + C$. Check by differentiation.

3. $1/x^2$

Solution: First we write $1/x^2 = x^{-2}$ The antiderivative is $-x^{-1} + C$. Check by differentiation.

General Rule: The antiderivative of x^n is

$$\frac{1}{n+1}x^{n+1} + C \quad n \neq -1$$

DANGER: We cannot yet find the antiderivative of x^{-1} . Notation: The general antiderivative of x^n , $n \neq -1$

$$\int x^{n} \, dx = \frac{1}{n+1} x^{n+1} + C \quad n \neq -1$$

Examples: Find f if

1.
$$f'(x) = \frac{1}{\sqrt{x}} + 1 + \sqrt{x}$$

2.
$$f'(x) = \sin x$$

3.
$$f'(x) = \cos x$$

4.
$$f'(x) = \sec^2 x$$

5.
$$f'(x) = \tan x \sec x$$

6.
$$f'(x) = \csc^2 x$$

7.
$$f'(x) = \csc x \cot x$$

Rules:

$$\int f(x) + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x}}$$

$$\int f(x) + g(x) \, dx = \int f(x) \, dx + \int g(x) \, dx$$
$$\int k f(x) \, dx = k \int f(x) \, dx$$

Direction Fields: An equation f'(x) = g(x) assigns to each x, a values of the slope of the tangent line to the curve y = f(x). That is we do not know what y = f(x) is but we know how fast the curve is rising or falling.

Example: Consider $f'(x) = \cos x$. Starting at x = 0 say we can see how fast the curve y = f(x) is rising or falling. The lines form a "direction field." Once we choose a

point on the curve we have the entire curve.

The Constant of Integration:

Example: Suppose $f'(x) = 3x^2$ and f(1) = 3. Then $f(x) = x^3 + C$ and $1^3 + C = f(1) = 3$. Therefore C = 3 - 1 = 2 and $f(x) = x^3 + 2$. That is the extra condition f(1) = 3 uniquely determines f.

Example: A boy throws a ball. He releases the ball with an initial velocity of 48 feet per second. Find the velocity.

Solution: We know from physics that acceleration due to gravity is $32 ft/s^2$ down: v' = -32. Therefore v = -32t + C but 48 = v(0) = -32(0) + C so that C = 48 and the velocity is

$$v(t) = -32t + 48$$