4.5 L’Hopital’s Rule:

L’Hopital’s Rule: Suppose f(a) = 0 and g(a) = 0 and f and g are differentiable
near a. Then
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Why didn’t we use this rule in Chapter 1?7
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Solution: This is of the form oo — £00 which means there may be enough cancel-
lation that anything can happen. Find a common denominator.
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Solution: This expression is of the form +00/00. Again there is a version of I'Hospital’s
rule that applies here
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L’Hopital’s Rule
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applies if

1. lim f(z) =0 = lim g(x)
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