Introduction to the Derivative
Thomas Calculus Early Transcendentals §3.1, §3.2

Definition: The derivative of f(x) at x = a is defined to be
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provided the limit exists. (If the limit does not exist, f is not differentiable at a.)
Applications:
I. Velocity: Suppose a particle is moving in a straight line and its position at time
t is given by s(t). Then the velocity at time t is defined to be

s(t+h) — s(t)
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provided the derivative exists. Observe that

s(t+h) —s(t)
h

is the average velocity of the particle over the time interval [t,¢ + h]. Therefore the
(instantaneous) velocity is the limit of these average velocities as the time interval gets
shorter and shorter

Example: A ball is tossed into the air with vertical component to its velocity 60
ft/s. The height of the ball at time ¢ in seconds after the toss is s(t) = 60t — 16t*. Find
the velocity of the ball after 2 seconds. Is the ball still going up?

Solution: Compute the average velocity over various time intervals of length h
starting (or ending ) at time ¢ = 2.
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h N h
120+ 60h — 16(4 + 4h + h*) — [120 — 64]
N h
1204 60h — 64 — 64h — 16A?) — [120 — 64]
N h
_ —4h — 16R?
- h
_ h(—4—16h)
N h
— —4—16h

To find the velocity, take the limit of the average velocities over shorter and shorter time

periods:
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= }lbim —4 —16h = —4

—0

The ball is falling at 4 ft/s.



II. Slope of a Curve: The slope of a graph y = f(z) is defined to be
o) — i L@ = 1)

h—0 h

provided the derivative exists. Observe that the ratio

fla+h) = f(a)
h

is the slope of the secant line through the two points (a, f(a)) and (a+h, f(a+h)). The
slope of the curve is therefore the limiting value of the slopes of these secant lines as the
two points get closer and closer.

Example: Find the slope of the curve y = 23 + 2 at = 1. Find an equation for
the tangent line there.

Solution: The slope is
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Compute f(1) = 2; f(1+h) = (1+h)3+1+h = 14+3h+3h*+h31+h = 2+4h+3h*+h>.
Therefore

fA+h)—f(1) 2+4h+3h*+h%—2 4h+3h>+h>  h(4+3h+ h?
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Note the cancellation of h. Therefore

= 44+3h+h?

f'(1) =lim4 +3h+h* =4
h—0
Therefore the slope is 4. An equation for the tangent line is
y—2=4(x—1)

§3.1 (Stewart 5th ed.)
Definition: The derivative of f(x) at x = a is defined to be
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provided the limit exists. (If the limit does not exist, f is not differentiable at a.)

Alternately
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where z — a = h.
Example: Find the derivative of f(z) =1/(x + 1) at z =0, 1, 2.
Solution: Find the derivative at a general point z
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Compute therefore f(x +h) =1/(z+ h+ 1) and
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Therefore the derivative is
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Therefore f'(0) = —1, f'(1) = —1/4 and f'(2) = —1/9.
Section 3.2 of Stewart
Theorem 4: If f is differentiable at * = a the f is continuous at z = a.
Proof: Write

. s f(x) — fla) _ : _
lim f(z) — f(a) —}clglgﬁ(f—a) = f'(a) lim(z —a) =0
so that lim,,, f(xz) = f(a). Since f is defined at a, this shows that f is continuous.
Example: Find the slope of the curve y = vx + 3 at x = 1. Find an equation for
the tangent line there.
Solution: The slope is
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Compute f(1) =2; f(1+h) =1+ h+ 3 =+/4+ h. Therefore
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Rationalize the denominator.
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Note the cancellation of h. Therefore
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Therefore the slope is 1/4. An equation for the tangent line is
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Non-Differentiable Functions: As a consequence, functions that are discontinuous
at a point are not differentiable at that point. For example f(x)|x] the greatest integer
less or equal x is not differentiable at any integer. At other points it is differentiable.

Are there functions which are continuous that are not differentiable? Yes. For ex-
ample if the curve goes straight up for an instant like f(z) = 2/ at 2 = 0: 2'/3 is not
differentiable at x = 0.

Another possiblity is a function whose graph has a corner in it or a cusp. For example
f(z) = |z|. The graph has a right angle at the origin so let’s check for a derivative at
x = 0 Consider
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Does this limit exist? Consider
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On the other hand

Therefore the limit does not exist. This says that f(x) = |z| is not differentiable at
x = 0.



