Continuity

Thomas's Calculus Early Transcendentals§2.5

Intuitively, a function is continuous if you can graph it without lifting your pencil from the page.

Most familiar functions are continuous, such as $f(x) = x^2$, $f(x) = \sin x$, f(x) = |x|. But $f(x) = \tan x$ is discontinuous at $\pm \pi/2$ plus and minus all multiples of π

Definition: A function f(x) is *continuous* at a if

- 1. a is in the domain of f.
- 2. $\lim_{x \to a} f(x)$ exists. (So that f is defined near a.)
- 3. $\lim_{x \to a} f(x) = f(a)$

The function f is continuous if it is continuous at every point of its domain. **Example** (transparency for limits) Which property fails? **Examples**

- 1. $f(x) = x^5$. f is continuous.
- 2. $f(x) = \frac{x^2}{x+1}$. f is continuous except at x = -1.
- 3. $f(x) = \frac{x^2 9}{x 3}$. f is continuous except at x = 3. Note f(x) = x + 3, provided $x \neq 3$.
- 4. $f(x) = \begin{cases} \frac{x^2 9}{x 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 6 \end{cases}$
- 5. $f(x) = \cos x$. f is continuous.
- 6. $f(x) = \sec x$. f is continuous at all points except $x = \pm \pi/2 + k\pi$ where $k = 0, \pm 1, \pm 2, \pm 3, \ldots$
- 7. f(x) = [|x|] so that f(x) is the greatest integer less or equal x. f is a stair step.

Rules Suppose the f(x) and g(x) are continuous at x = a and c is a constant. Then the following functions are continuous

- 1. $f(x) \pm g(x)$
- 2. cf(x)
- 3. f(x)g(x)
- 4. $\frac{f(x)}{g(x)}$ provided $g(a) \neq 0$.

Example: $\frac{x^4 - 3x^2 + x - 5}{(x - 2)(x + 1)}$ is continuous everywhere except x = 2 and x = -1. Intermediate Value Theorem: Suppose that f(x) is a continuous function defined on an interval $a \le x \le b$. Then f(x) takes every value between f(a) and f(b). In symbols if N is between f(a) and f(b) then there is $c, a \le c \le b$ so that f(c) = N**Picture:**

Example: If $f(x) = x^3 - 4x + 2$ then f(0) = 2 and f(1) = -1. Therefore there must be c, 0 < c < 1 so that $f(c) = c^3 - 4c + 2 = 0$. (Here N = 0.)

Example: (Skip?) For what value of the constant c is the function f continuous on $-2 < x < \infty$?

$$f(x) = \begin{cases} \frac{x-3}{x^2-x-6} & \text{if } x \neq 3\\ c & \text{if } x = 3 \end{cases}$$