Preview of Differential Calculus Thomas §2.1

We give two motivating examples for defining the derivative.

Example 1: (Velocity) Consider a small rocket on a model railway car on a long straight piece of track. We want to find the velocity of the car after the rocket booster is ignited. For example we want to find the velocity 1 second after ignition. We film the experiment with a camera that exposes a 32 frames of film every second. Behind the track is a backdrop with the distance along the track marked in feet.

t (time in seconds)	1	2	3/2	5/4	9/8	17/16	33/32
s (distance in ft)	28.0	145.0	69.4	46.2	36.8	32.35	30.15

and of course there is also data on the time before t = 1

t (time in seconds)	1	0	1/2	5/4	9/8	15/16	31/32
s (distance in ft)	28.0	0.0	9.0	17.2	20.6	24.0	25.9

From these numbers we can calculate the average velocity of the car over the time intervals beginning at time t = 1

Time interval (s)	Average velocity (ft/s)
1 < t < 2	(145.0-28.0)/(2-1)=117
1 < t < 3/2	(69.4-28.0)/(3/2-1) = 82.8
1 < t < 5/4	(46.2-28.0)/(5/4-1) = 72.8
1 < t < 9/8	(36.8-28.0)/(9/8-1) = 70.4
1 < t < 17/16	(32.35-28.0)/(17/16-1) = 69.6
1 < t < 33/32	(30.15-28.0)/(33/32-1)=68.8
0 < t < 1	(0.0-28.0)/(0-1)=28.0
1/2 < t < 1	(9.0-28.0)/(1/2-1) = 38.0
3/4 < t < 1	(17.2-28.0)/(3/4-1) = 51.2
7/8 < t < 1	(20.6-28.0)/(7/8-1) = 59.2
15/16 < t < 1	(24.0-28.0)/(15/16-1) = 64.0
31/32 < t < 1	(25.9-28.0)/(31/32-1) = 67.2

Newton defined the (instantaneous) velocity at time t_0 to be

$$\lim_{t_1 \to t_0} \frac{s(t_1) - s(t_0)}{t_1 - t_0}$$

(where lim is read "the limit as t_1 goes to t_0 ") The data here suggests that the instantanous velocity is about 68 ft/s. Of course this estimate only uses the data at the three times t=31/32,1,33/32. We'd prefer data even closer to t = 1 but that data may be physically difficult to obtain.

Before proceeding to the second motivational example observe that Newton's definition can be written equivalently as

"
$$\lim_{h \to 0}$$
", $\frac{s(t_0 + h) - s(t_0)}{h}$

by setting $h = t_1 - t_0$ so that $t_0 + h = t_1$.

Example 1: (Slope of a Curve) The slope of a curve y = f(x) at a point (a, f(a)) is the slope of the tangent line to the curve there. It is denoted f'(a) and is the derivative of f(x) at x = a. The tangent line is the line of best fit to the curve at the point. It is unique provided it exists. To find the slope f'(a) of the curve y = f(x), we approximate the tangent line by secant lines that cross the curve twice, once at the point (a, f(a)) and a second time at a "nearby" point.

Example: Find the derivative of $f(x) = x^2 + x$ at x = 1. Solution: Draw a picture.

Find the slope of some secant lines that pass through (1,2) and a nearby point also on the curve $y = x^2 + x$. For example when x = 2, y = 6 so that the slope of the secant is

$$\frac{6-2}{2-1} = 4$$

Similarly when x = 0, y = 0 so that the slope is

$$\frac{0-2}{0-1} = 2$$

Let us check points very nearby. Consider x = 1 + h where h is small. Then $y = (1+h)^2 + 1 + h = 1 + 2h + h^2 + 1 + h$. The slope is

$$\frac{1+2h+h^2+1+h-2}{1+h-1} = \frac{3h+h^2}{h} = 3+h$$

or in symbols the slope is

$$\frac{f(1+h) - f(1)}{h}$$

For the slope of the tangent let the two points get closer and closer:

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} 3 + h = 3$$

The slope of the tangent line is 3