12.3 Dot Product 1

If $\overrightarrow{a} = \langle a_1, a_2, a_3 \rangle$ and $\overrightarrow{b} = \langle b_1, b_2, b_3 \rangle$ then $\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ **Properties** If \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} are vectors and c is a real number then 1. $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2 = a_1^2 + a_2^2 + a_3^2$ 2. $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ (Commutative Property) 3. $\overrightarrow{a}(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$ (Distributive Property) 4. $(\overrightarrow{ca}) \cdot \overrightarrow{b} = c(\overrightarrow{a} \cdot \overrightarrow{b})$ 5. $\overrightarrow{a} \cdot \overrightarrow{0} = 0$

These properties follow directly form the definition.

Often in the physical sciences the dot product is defined in a different way which has a certain physical appeal.

Theorem Let θ be angle between two vectors \overrightarrow{a} and \overrightarrow{b} . Then

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$$

The angle between vectors is the angle at the vertex of the triangle determined by placing the two vectors tail to tail. It is understood that $0 \le \theta \le \pi$. If $\theta = 0$ the vectors must be parallel and "in the same direction" and if $\theta = \pi$ the vectors are parallel but in the opposite direction. If $\theta = \pi/2$ then the vectors are perpendicular.

Proof. Recall the cosine law from trigonometry. $a^2 + b^2 - 2ab\cos\theta = c^2$ Converting to vector notation

$$\overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} - 2|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = |\overrightarrow{a} - \overrightarrow{b}|^2 = \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} - 2\overrightarrow{a} \cdot \overrightarrow{b}$$

Simplifying we have the result.

Simplifying we have the result.

Observe that the dot product provides an easy way to compute the angle between two vectors \rightarrow

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$$

Definition: Two vectors \overrightarrow{a} , \overrightarrow{b} are said to be orthogonal or perpendicular if $\overrightarrow{a} \cdot \overrightarrow{b} = 0$.

Orthgonal is equivalent to $\theta = \pi/2$.

Example: Let $\overrightarrow{a} = \langle -3, 5, -2 \rangle$ and $\overrightarrow{b} = \langle 4, 4, ? \rangle$ then \overrightarrow{a} and \overrightarrow{b} are orthogonal.

textbfProjections: Given two vectors **Example** If \overrightarrow{a} and \overrightarrow{b} are two vectors then we define the *component of* \overrightarrow{b} along \overrightarrow{a} by

$$\operatorname{comp}_{a}\overrightarrow{b} = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|}$$

which is the "length" of the vector that we get by "dropping a perpendicular" from \overrightarrow{b} onto the line determined by \overrightarrow{a} . This vector is the *projection of* \overrightarrow{b} onto \overrightarrow{a} and we have

$$\operatorname{proj}_{a}\overrightarrow{b} = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|^{2}}\overrightarrow{a}$$

Observe that if the projection and \overrightarrow{a} are in opposite directions then $\operatorname{comp}_a \overrightarrow{b} < 0$. In general $\operatorname{proj}_a \overrightarrow{b}$ is parallel to \overrightarrow{a} . (Not \overrightarrow{b}). See the picture below.

Example: If $\overrightarrow{a} = \langle 1, -3, 5 \rangle$ and $\overrightarrow{b} = \langle -2, 0, 4 \rangle$ then $\operatorname{comp}_{a} \overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|} = \frac{18}{\sqrt{35}}$

and

$$\operatorname{proj}_{a}\overrightarrow{b} = \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|^{2}}\overrightarrow{a}\frac{18}{35}\langle 1, -3, 5\rangle$$