
11.5 Area in Polar Coordinates:

Find the area enclosed by a curve given in polar coordinates by r = f(θ). For example
find the area of one leaf of the rose r = a sin 3θ. The first step is to derive the formula
for the area of a circular sector of radius r and opening angle θ. This is a portion of a
circular disk. The picture is
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Area of a sector of radius r and opening angle θ: Area = r2θ/2.
Next approximate the area inside the curve r = f(θ) by sectors. See picture.

The area is approximately
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or in the limit as ∆θ → 0 and n → ∞.
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Example: Find the area of one leaf of the rose r = sin 3θ.
Solution: A leaf is traced out for 0 ≤ θ ≤ π/3 by our earlier work. Therefore the

area is
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Example: Find the area inside the cardioid r = 1+sin θ but outside the circle r = 3/2.
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Solution: Sketch! The two curves intersect when 3/2 = 1 + sin θ or θ = π/6 to

θ = 5π/6. Therefore area is
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Example: Express the area common to the two circles r = cos θ and r = sin θ in
terms of one or more integrals. Do not evaluate.

Solution. Graph.
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