11.3 Polar Co-ordinates:

This is an alternate way of specifying points on the plane. It is useful when there is a distinguished point (e.g the sun). Instead of the xy coordinate axes there is a point and ray and position is given by specifying the distance r to the point and the angle θ formed with the ray. Picture

Example: The point with polar coordinates $(r, \theta) = (3, \pi/3)$ is here. One can recover the Cartesian coordinates with the conversion

$$\begin{array}{rcl} x &=& r\cos\theta\\ y &=& r\sin\theta \end{array}$$

or in this case x = 3/2 and $y = 3\sqrt{3}/2$. Conversely the point $(3/2, 3\sqrt{3}/2)$ in Cartesian coordinates has polar coordinates $(r, \theta) = (3, \pi/3) = (3, \pi/3 + 2n\pi)$ where $n = 0, \pm 1, \pm 2, \pm 3, \ldots$ or in fact $(r, \theta) = (3, \pi/3) = (-3, 4\pi/3 + 2n\pi)$. However, it is true that

$$r^2 = x^2 + y^2$$

(An equation for θ is trickier.)

11.4 Graphing in Polar Co-ordinates Example: Graph the curve given in polar coordinates by

$$r(\theta) = 3(1 + \cos\theta)$$

Solution 1: It is possible to plot points

 $r = 3(1 + \cos\theta)$ θ 0 6 $3(1+\sqrt{3}/2) \sim 5.59$ $\pi/6$ $3(1+\sqrt{2}/2) \sim 5.12$ $\pi/4$ 9/2 = 4.5 $\pi/3$ $\pi/2$ 3 $2\pi/3$ 3/2 = 1.5 π 0

but it is faster to work from a plot of $y = 3(1 + \cos x)$. Solution 2: Graph of $y = 3(1 + \cos x)$ in Cartesian coordinates! Then use the plot as if it were a table of values to get the polar plot.

Example: Plot the curve $r = a \sin \theta$ where a > 0 is a constant.

Convert to Cartesian coordinates: Multiply by r, $r^2 = ar \sin \theta$ so that $x^2 + y^2 = ay$ and then complete the square: $x^2 + (y - a/2)^2 = a^2/4$ Its a circle of radius a/2 centered at (0, a/2) (in Cartesian coordinates).

Example: Similarly $r = a \cos \theta$ is a circle of radius a/2 and center (a/2, 0).

Example: Sketch the curve in polar coordinates $r = 2 \sin 3\theta$.

Solution. Sketch in Cartesian coordinates $y = 2 \sin 3x$. It is enough to graph for $0 \le x \le 2\pi$ because $2 \sin 3x$ has period 2π as does θ of polar coordinates.

Use this instead of a table of values for $r = 2 \sin 3\theta$. The picture is a 3 leaved rose.