
10.7 Expanding Functions as Power Series:

Example: Recall the geometric series:

a

1− x
= a+ ax+ ax2 + ax3 + ax4 + . . . =

∞∑
n=1

axn−1

for any constant a. The two expressions are equal for |x| < 1. The radius of convergence
of the series is R = 1. For x = 2 the right side makes sense but the left does not.

Example: Expand 1/(4 + x2) as a power series.

1

4 + x2
=

1/4

1− (−x2/4)
=

1

4
[1− x2/4 + x4/16− . . .+ (−1)nx2n/4n + . . .

Calculus and Power Series: If the power series f(x) =
∑

∞

n=0 cn(x−a)n has radius
of convergence R where 0 < R ≤ ∞ then the function f(x) so defined is differentiable
on the interval a−R < x < a+R and

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + . . . =
∑
n=1

ncn(x− a)n−1

∫
f(x) dx = C + c0(x− a) +

c1
2
(x− a)2 +

c2
3
(x− a)3 +

c3
4
(x− a)4 + . . .

= C +
∑
n=0

cn
n+ 1

(x− a)n+1

Both these power series have the same radius of convergence R as does
∑

∞

n
cn(x− a)n

Example:

1

(1− x)2
=

d

dx

1

1− x
=

d

dx
(1+x+x2+x3+x4+. . .) = 1+2x+3x2+4x3+. . . =

∞∑
n=1

nxn−1

The series converges for |x| < 1 by the theorem. Similarly

ln(1− x) = −
∫ dx

1− x
= −

∫
(1 + x+ x2 + x3 + x4 + . . .) dx

= C + x+ x2/2 + x3/3 + x4/4 + . . . = C +
∞∑
n=0

xn+1/(n+ 1)

and one easily checks by setting x = 0 that C = 0. The series converges for |x| < 1. One
sees therefore that

ln x = ln[1− (1− x)] =
∞∑
n=0

(1− x)n+1/(n+ 1) =
∞∑
n=1

(1− x)n/n

Example:

tan−1(x) =
∫ 1

1 + x2
dx =

∫ ∞∑
n=0

(−x2)n dx = C +
∞∑
n=0

(−1)nx2n+1/(2n+ 1)

Setting x = 0, we see that C = 0. The series converges for |x2| < 1 which means |x| < 1.


