10.7 Expanding Functions as Power Series:
Example: Recall the geometric series:
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for any constant a. The two expressions are equal for |z| < 1. The radius of convergence
of the series is R = 1. For z = 2 the right side makes sense but the left does not.
Example: Expand 1/(4 + 2%) as a power series.
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Calculus and Power Series: If the power series f(z) = Y0, ¢, (2 —a)™ has radius
of convergence R where 0 < R < oo then the function f(z) so defined is differentiable
on the interval e — R < x < a + R and

f'(x) = ec1+2c(x —a)+ 3cs(x — a)? = chn r—a)"!
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Both these power series have the same radius of convergence R as does Y°° ¢, (z — a)"
Example:
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The series converges for |x| < 1 by the theorem. Similarly
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and one easily checks by setting 2 = 0 that C' = 0. The series converges for |z| < 1. One
sees therefore that
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Example:
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Setting = 0, we see that C' = 0. The series converges for |z%| < 1 which means |z| < 1.




