10.7 Power Series: A power series is a series of the form
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where ¢, ia a sequence and a a constant and this defines a function of x wherever it
converges. For example
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because this is a geometric series. This expansion shows us that the division a/(1 — x)
can be approximated by a polynomial expression which means simply multiplications
and divisions.

Example: Determine for which values of x the series converges.
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Solution: Try the ratio test.
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The series converges provided 2|z — 3| < 1 so that 2.5 < x < 3.5 and it diverges if
2|z — 3] > 1. The radius of convergence for this series is 1/2.
Theorem 3. For the power series > ° ¢, (z — a)" there are only three possibilities

1. The power series converges at x = a only and diverges for all x # a, or
2. The power series converges for all real x, or

3. There exists a constant R > 0 so that the power series converges for all x, a — R <
r < a+ R and diverges for |z —a| > R

The R is called the radius of convergence. Picture

Proof. This is an application of the ratio test.
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The limit exists for £ = a at least. If
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does not exist or is infinity then that is the only x for which it converges. If however
the above limit exists and it is L then the ratio test says the series converges provided
Llx — a|] < 1 and diverges is L]z —a| > 1 If L # 0 this is case 3 and L = 1/R; if L =0
then this is case 2. O
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Example: For what values of x does Z —'(x +2)"*! converge? What is the radius
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of convergence?
Solution. Apply the ratio test.
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This says that the series converges for all = by the ratio test. The radius of convergence
is oo.

Example: For what values of x does the series Z 5—2(% +1)" converge?
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Solution. Apply the ratio test.
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So the interval of convergence is |z + 1|/5 < 1 so that —6 < = < 4.



