8.3 Comparison Test:

Example: Does $\sum_{n=3}^{\infty} \frac{1}{n-\sqrt{n-1}}$ converge or diverge. The terms are all larger than 1/n the harmonic series and so the series must diverge.

Comparison Test. Given a series $\sum_{n=1}^{\infty} a_n$ and $a_n \ge 0$ suppose it is possible to find a series $\sum_{n=1}^{\infty} b_n$ so that $b_n \ge 0$ and either

- 1. $a_n \leq b_n$ for all n and the series $\sum_{n=1}^{\infty} b_n$ converges. Then $\sum_{n=1}^{\infty} a_n$ converges also. or
- 2. $a_n \geq b_n$ for all n and the series $\sum_{n=1}^{\infty} b_n$ diverges. Then $\sum_{n=1}^{\infty} a_n$ diverges also

Explanation: Look at the area interpretation of the series. In the first case, the area for the b_n series is finite and larger than that for the a_n series and so the area for the latter series must also be finite. Similarly in the second case: the area for the b_n series is infinite but smaller than the area for the a_n series.

Example. $\sum_{n=3}^{\infty} \frac{5}{10^n + \sqrt{n}}$ converges by comparison with the geometric series $5 \sum_{n=3}^{\infty} 10^{-n}$ which is convergent $(r = 10^{-1}; a = 5 \cdot 10^{-3})$

Example. $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges by comparison with the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ because $1/n \le 1/\ln n.$

Limit Comparison Test: Given a series $\sum_{n=1}^{\infty} a_n$ where $a_n \ge 0$, suppose there is a series $\sum_{n=0}^{\infty} b_n$ where $b_n \ge 0$ so that

- 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$ exists then the two series either both converge or both diverge.
- 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum^{\infty} b_n$ converges implies $\sum^{\infty} a_n$ converges.
- 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum^{\infty} b_n$ diverges then so does $\sum^{\infty} a_n$.

Example. Determine whether the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2+n+1}$ converges or diverges. Solution. Compare to the harmonic series $\sum^{\infty} 1/n$. Then

$$a_n = \frac{n+2}{n^2+n+1}$$
 $b_n = 1/n$

so that

$$\frac{a_n}{b_n} = \frac{n^2 + 2n}{n^2 + n + 1} \quad \text{and} \quad \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Therefore the two series either both converge or both diverge. Here, since the harmonic series diverges, so does the original series.

Example: Determine whether the series $\sum_{n=2}^{\infty} \frac{n}{(n-1)^{5/2}}$ converges or diverges.

Example. Compare to $\sum_{n=2}^{\infty} \frac{1}{n^{3/2}}$

$$\lim_{n \to \infty} \frac{\frac{n}{(n-1)^{5/2}}}{\frac{1}{n^{3/2}}} = \lim_{n \to \infty} \left(\frac{n}{(n-1)}\right)^{5/2} = 1$$

The series $\sum_{n=2}^{\infty} \frac{1}{n^{3/2}}$ converges (p > 1). Therefore the original series converges. Note that the series

$$\sum_{n=2}^{\infty} \frac{n}{(n-1)^{5/2}} \ge \sum_{n=2}^{\infty} \frac{1}{n^{3/2}}$$

and so the first comparison test doesn't work.