8.3 Integral Test:

Series cannot always be summed exactly. Primarily we will be interested in conver-
gence or divergence.

Series as Area. If a,, > 0 then the partial sum s, = >I'; a; represents the area
indicated below

Now suppose that a, = f(n) where f(z) > 0 and f(z) is decreasing. From the
picture it is clear that
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Integral Test. Suppose there is a continuous, positive decreasing function f(x) and
a, = f(n). Then
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/ f(z)dzxis convergent if and only if » _ a,is convergent
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Example: The p series:
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converges. Recall that the latter converges if and only if p > 1 because
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provided p # 1. The limit on the right exists if and only if p > 1. If p = 1 then we get
a Int which does not converge either. So the integral converges if and only if p > 1. By
the integral test
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Example: >2° . 1/4/n diverges

Example: The harmonic series > 07, 1/n diverges

Examplezz 1 converges because
n

n=0

o 1
/ dr = lim tan™'t = 7/2.
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