
Chapter 4: Euclidean Geometry

Philip of Macedonia 382-336 B.C. and his son Alexander the Great 356-323 B.C.
conquered Greece, Egypt and subjugated the city states like Athens. Their armies were
primarily Greek and so the Greek culture was dispersed over an even broader area (even
to Mesopotamia and India) but different cities were favored. One was Alexandria which
rapidly grew to be a large Egyptian port city of commerce, trade and learning. There
was the Museum (seat of the Muses) and the Library. Scholars were supported at the
Museum at royal expense and the Library was reknowned for its extensive collections
(that were burnt in 641). Please read about the Museum and Library of Alexandria.

Euclid, Archimedes, Eratosthenes, Appolonius, Pappus, Claudius Ptolemy, Diophan-
tus all studied in Alexandria.

Euclid wrote the Elements of Geometry in 13 books. It is the only (but not the first)
systematic treatment of geometry to reach us. It was a standard textbook from 300 B.C.
to the 1800’s with 1000 editions. Still little is known about Euclid. See the text (page
137). Also note the famous quote of Proclus 410-485 A.D. who was a commentator on
Euclid. He said to Ptolemy I there is “no royal road to geometry” when the ruler asked
for a quicker way to learn geometry.

Euclid’s Elements became the model for mathematical structure. He started with
“Common Notions” such as what a point and line are (see page 140 of the text) and
then he added postulates

1. A straight line can be drawn from any point to any other point.

2. A finite straight line can be continued continuously in a line.

3. A circle may be described with any center and radius.

4. All right angles are equal to one another

5. If a straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, the the two straight lines, if produced indefinitely
meet on that side on which are the angles less than two right angles.

The picture for the fifth postulate is

The idea behind the postulates was that all geometry could be derived from these
simple beginnings and Euclid went about doing just that. It should be noted that Euclid
used things he didn’t state. For example there is nothing that assures that a line drawn
through a point inside a cirlce and through another point outside, will actually meet the
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circle. Later mathematicians filled some gaps until David Hilbert 1862-1943 tried to fill
out the postulates and common notions so that the results of geometry did really follow
by deduction. (He wrote Grundlagen der Geometrie in 1899) See page 142 of our text.

Postulate 5 was very controversial because it did not seem as fundamental as the
others and so there were many attempts to derive it from the other 4. Lobachevsky
1793-1856 showed that you could replace the fifth postulate with: given a line and a
point not on the line there exist two lines through the point which are parallel to the
given line. He went on from there and built an entirely consistent “non Euclidean”
geometry. He and John Bolyai 1802-1860 who similarly constructed geometry based on
the negation of the fifth postulate were derided and denied support for work that David
Hilbert would later describe as “ the most suggestive and notable achievement of the
last century.”

The book proceeds to outline the derivation of some of the fundamentals of geometry
such as the construction of an equilateral triangle with any given side length. Like the
book we shall take the congruence of two triangles who have two equal sides and the
included angle as an axiom and not try to derive it using superposition as Euclid did.
He further shows isosceles triangles have equal angles, that is, if two sides of a triangle
are equal then the opposite angles are also equal. Pappus (ca 300 A.D.) gave the brief
proof on page 145.

Along the way Euclid shows (Proposition 11) that, given a line and a point not on
the line there exists a perpendicular to the line through the point.

The next result that our author Burton (on his way to discuss the fifth postulate)
considers is

Proposition 16 If one of the sides of a triangle is produced, then the exterior angle

is greater than either opposite interior angle

Proof: Let ABC be the triangle and extend the side BC through C to D to create
the exterior angle. If E is the midpoint of AC then extend BE through E to F so that
BE = EF. Then AEB is congruent to CEF by side-angle-side congruence. So interior
angle ∠BAE is equal to ∠ECF. Then Euclid goes on to argue that ∠ECF is smaller than
∠ACD because it is in the picture (from page 145 of the text).

This picture and proof use something reasonable but something that is not stated
in the postulates is used. To show this we build a different physical model of geometry
than is usual: geometry on a sphere like the earth. A point is a point on the sphere but
a line through two points is actually a great circle route determined by passing a plane
through the two points and through the center of the sphere as well. Where that plane
intersects the sphere is a straight line. This definition works with the first 4 postulates.
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Now on our sphere, draw a triangle ABC with one side AB extending along the equator
more than 90 longitude degrees and make C the north pole. Then the extension of BC
to D creates an angle that is smaller than 90 degrees and so is smaller than an included
angle: the angles at A and B are both right angles. If one constructs F then it may go
outside the ∠ACD. Picture

It follows therefore that we must assume something new to get Proposition 16. We
assume it.

Two lines are defined as parallel if they never meet. On a sphere there are no parallel
lines but our assumption of Proposition 16 has done away with the spherical model.
Proposition 16 assures that, given a line ℓ and a point P not on ℓ, there is a line parallel
to ℓ through P, for construct a perpendicular to ℓ through any point (other than P) and
then construct a perpendicular ℓ′ through P to this new line. Then ℓ and ℓ′ do not meet
because if they did they would form a triangle and the exterior angle would have to be
larger than the interior right angle but it is clearly just a right angle itself (Proposition
13 treats supplementary angles).

Proposition 27: If two lines are cut by a transversal so that a pair of alternate

interior angles are equal then the lines are parallel.

Picture (page 147). Proof: Suppose not. Suppose that the two lines are not parallel

and therefore they meet at some point and form a triangle ABC. An exterior angle to
ABC is one of our two alternate interior angles and so it must be larger than the either of
the interior angles of ABC but of course one of those interior angle is one of our pair and
so it equals the exterior angle. This contradiction proves that the two lines are parallel.

Now the converse. For the first time we need the parallel postulate 5.
Proposition 29: A transversal falling on two parallel lines makes alternate interior

angles that are equal. The sum of two interior angles on the same side of the transversal

is two right angles.

Picture: Page 148
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Proof: Suppose that the alternate angles were not equal, say ∠a ¿ ∠c. Since ∠b
= 180◦- ∠a as supplementary angles (Proposition 13) ∠a+ ∠b= 180◦ ¿ ∠c + ∠b. The
Parallel Postulate 5 then says that the two lines must meet on that side of the transversal,
contradicting the fact that the lines are parallel.

It follows from Proposition 29: Proposition 30: If two distinct lines are each parallel

to a third line then they are parallel to each other. This follows (see page 149) because
parallel is equivalent to the equality of alternate interior angles. One consequence is
that there is exactly one line parallel to a given line through a given point not on the
line. We have already seen that there is such a line (construct a perpendicular to a
perpendicular). If there were two lines parallel to the initial line through the same point
then they would have to be parallel but parallel lines can’t meet.

This leads us finally to
Proposition 32: The sum of the interior angles of a triangle equals two right angles.
Picture page 149.

Proof: Through vertex B of ABC construct a line parallel to AC. This creates at B,
angles equal to ∠A and ∠C that along with ∠B create a 180◦ angle.

The “mousetrap” proof of the Pythagorean theorem appears on page 150. Two other
proofs appear on pages 152-153 Interestingly the converse is also established. Suppose
that there is a triangle ABC so that AB2 + AC2=BC2.

Picture from page 151.
Construct a right triangle ACD with one leg AC and the other leg the same length

as AB. Then the two triangles have the same side lengths by the Pythagorean theorem.
They are therefore congruent and so the initial triangle must be a right triangle.

Greek Geometric Algebra: The Greeks abandoned numbers in favor of lengths proba-
bly because they were uncomfortable with the idea of irrational numbers. Not being able
to represent certain lengths as the ratio of integers they preferred to leave everything as
lengths and argue geometricly.
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Picture from the bottom of page 153. For example to solve the equation ax = bc for
the unknown x, the idea was to construct a rectangle the same area as a b× c rectangle.
Extend one side AB of the b × c rectangle ABCD by a units to E. Extend the diagonal
ED until it meets the extension of BC at F. Then CF is length x: a/c = b/x by similar
triangles and the a × x rectangle can be constructed on the other side of EF.

Quadratic equations could also be solved by geomtric methods. (Did anyone ever
think of solving cubics?) We will consider the equation

x2 + ax = b2

It is not important that b2 is a perfect square as long as it is positive. (Any positive
constructible number can be written as a perfect square by teh method of Problem
3, Section 3.5. The book also treats the case of x2 + b2 = ax and the methods are
comparable.

Geometrically we want to construct a rectangle with one side length a and indeter-
minate other side x such that if we attach a square x2 to the end of that rectangle the
total area is b2. Picture on page 156.

Algebraically the Babylonians solved this by setting y = a + x so that

xy = b2 and y − x = a

and then setting y = z + a/2, and x = z − a/2 etc. The Greeks argued as follows.
Construct b (see Problem 12 Section 4.2). Then let AB be a line segment of length a
and construct a perpendicular BE of length b at endpoint B. Let P be the midpoint of
AB and draw a circular arc centered at P and through E so that it meets the extension
of AB at Q. Define x = BQ. Picture on page 156.

Now x is the solution to our problem. This is a consequence of the Pythagorean
theorem

(a

2

)

2

+ b2 =
(a

2
+ x

)

2

Euclid gave a different geometric derivation: historically correct and mathematically
obtuse?
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The Golden Ratio: The “golden section” of a line segment of length a is a portion
x of a so that a is to x as x is to the remainder a − x:

a

x
=

x

a − x

Equivalently a2 = ax + x2 which is the same type of quadratic that we just solved with
b = a. The solution is

x =
a

2
(−1 ±

√
5)

Taking the positive solution: the golden segment of a is (a/2)(
√

5 − 1). If a = 1 then
x ≈ 0.61803398875. The reciprocal of the golden segment for a = 1 is the golden ratio:

2√
5 − 1

=

√
5 + 1

2
(= x + 1) =≈ 1.61803398875

Example: Golden Rectangles Construct a golden rectangle, that is a rectangle
with the ratio of length to width as the golden ratio.

Picture page 157

Solution: Construct a line segment AB of unit length and a perpendicular BE at
one end so that BE is length one also. Draw an arc with center P the midpoint of AB
and radius PE and this cuts the extension of AB at Q and BQ is x. Draw a semicircle
with center B and radius x cuts the line AQ at C (and Q). The rectangle with vertices
BQE is a golden rectangle as is the one with vertices BCE and so is the rectangle with
base AQ and passing through E. Another golden rectangle has base AC and height x
and finally base AB and height x.

Remark: The Parthenon in Athens was constructed to be a golden rectangle. (See
also Problem 21 in Section 3.3.)

Constructing Regular Polygons: The Pentagon: Is it possible to inscribe in
a circle a polygon with equal sides using compass and straight edge? The equilateral
triangle and the square are fairly straightforward to construct and once you have those
bisecting angles allows you to double the number of sides to that a hexagon and octagon
etc. are constructible. A seven sided polygon was not constructed by the ancients but
a pentagon and decagon were constructed. We construct a decagon and thereby the
pentagon.

To construct a decagon or pentagon the goal is construct a 72◦ or 36◦ angle because
that is the size of angle that one side of the pentagon or decagon will subtend. Start
with a line segment AB of length a and construct a golden segment AC of length x =
a(
√

5 − 1)/2 along AB. Picture page 159. (don’t label DC with x yet).
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Draw a circular arc of radius a and center A through B and from B measure off a chord
of length x meeting the arc at D. We will show that the triangles ABD and DCB are
similar. It is clear that ∠D = ∠B (= α). We use the definition of the golden segment

a

x
=

x

a − x
or

AD

DB
=

DB

CB

This says that the corresponding sides of ABD and DCB are in the same ratio and since
the contained angles are equal, this shows the triangles are similar.

Now we chase angles. We now know that ACD is isosceles with sidelength x and
so ∠A = ∠CDA = β and α = ∠D = ∠BCD. Looking at triangle ABD we see that
2α + β = 180◦ and from triangle ACD we see that α = 2β and so we have 5β = 180◦

and so β = 36◦.
It now follows that the circle of center A and radius a has a decagon inscribed if we

cut off chords like BD of length x successively around the circle. A regular pentagon is
constructed by ignoring alternate verices of the decagon.

The pentagon usually with the diagonals drawn in became the insignia of the Pythagore-
ans.

Carl Friedrich Gauss (1777-1855) proved that a regular polygon with n sides could
be constructed by straight edge and compass if n = 17 and this was the first advance
(1796) since the ancient Greeks. Later he extended the result to show that if n is a prime
of the form 22

k

+ 1 then the polygon could be constructed (n = 257 and n = 65, 537 for
example.)


