
0.4 Cardinality

:
In Section 10, the book introduce the formal axioms of the natural numbers. we

need right now the Well Ordering Property.
The Well Ordering Property: Every nonempty subset S ⊆ N has a least

element. In other words there exists m ∈ S so that for all k ∈ S m ≤ k.
This property is simply assumed.
Example: If S is the even whole numbers then 2 is the least element.
Example: Consider S is the set of all prime numbers larger than 1010
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. Such
numbers have at least 1000,000 digits and are useful in coding. It is known by an
argument that we may have time in later in this class that there are infinitely many
primes. Therefore S has infinitely many members. The Well Ordering Principle
assures that there is a smallest member of S. It does not say how to access it.

Historical Note: Leopold Kronecker (December 7, 1823 December 29, 1891)
was a German mathematician and logician who argued that arithmetic and analysis
must be founded on ”whole numbers”, saying, ”God made the integers; all else is the
work of man” (Bell 1986, p. 477).

Georg Ferdinand Ludwig Philipp Cantor (1845 1918) was a German mathemati-
cian, best known as the inventor of set theory, which has become a fundamental theory
in mathematics. He was a professor at Halle, Province of Saxony 1867 on. Kronecker
said of Cantor ”scientific charlatan”, a ”renegade” and a ”corrupter of youth.” Cantor
believed his theory of transfinite numbers had been communicated to him by God.
Awarded the Sylvester medal (the highest honour) by the Royal Society in 1904 and
defended by David Hilbert: “No one can expel us from the paradise that Cantor has
created.”

Definition: Two sets A and B are said to be equinumerous (or of equal cardinal-
ity) if there exists a bijection f : A → B. We write A ∼ B.

It is important here that dom(f) = A and rng(f) = B and that f is injective (1–
1). Observe that if F is any set of sets then ∼ defines a relation S on F : (A,B) ∈ S if
and only if A ∼ B. The relationship “equinumerous” is an example of an equivalence
relation.

Check that “∼” is an equivalence relation on any family F of sets.

Lemma 0.1. The relation “∼” of “being equinumerous” is an equivalence relation
on any family F of sets.

Proof. We first check the relation is reflexive. Suppose A is a set. Is A ∼ A? [Is there
a bijection of A onto itself?] Yes the mapping ιA : A → A (the idenitity on A) defined
by ιA(a) = a for all a ∈ A is a bijection.

Next check symmetry: Suppose A and B are two sets and A ∼ B so that there is
a bijection f : A → B. Is it true that B ∼ A. Yes, choose f−1 : B → A. Because f is
a bijection, f−1 is also a bijection.
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Finally we check transitivity: Suppose that A ∼ B and B ∼ C so that there are
bijections f : A → B and g : B → C. We want to show that A ∼ C. However
g ◦ f : A → C is indeed a bijection by the previous result and so A ∼ C.

Remark Recall that equivalence classes are either disjoint or the same. One
equivalence class would consist of all sets in F with 17 elements. Indeed for every
finite number there is an equivalence class, namely all sets with that many elements.
However cardinality also makes sense for infinite sets.

Definition: A set S is said to be finite if, either S = ∅ (in which case we say S
has no elements) or if there exists n ∈ N and a bijection of S onto {1, 2, 3, . . . n} (in
which case we say S has n elements.) If a set is not finite then it is infinite. The
cardinal number of a finite set is the number of elements but the cardinal number of
an infinite set is transfinite.

The book writes In = {1, 2, 3, . . . , n} for the archetypal set of cardinality n.

Lemma 0.2. If m > n, m,n ∈ N then there is no injective mapping of Im into
In.

Proof. For each m ∈ N let P (m) be the statement: If there exists an injection f :
Im → In for some n ∈ N then n ≥ m. We prove P (m) for all m ∈ N by induction.
P (1) is the statement: If there is an injection f : I1 → In for some n ∈ N then n ≥ 1.
Here there is nothing to check. P (1) is true because n ≥ 1 by virtue of the fact n ∈ N.

Assume P (k) for some k ≥ 1, that is if there exists an injection f : Ik → In
for some n ∈ N then n ≥ k. To check P (k + 1), we suppose there is an injection
f : Ik+1 → In for some n ∈ N. We would like to show that n ≥ k + 1. Let us
denote f(k + 1) by n0 ∈ In: n0 = f(k + 1). Define g : Ik → In−1 by g(j) = f(j) if
f(j) < n0 and g(j) = f(j)− 1 if f(j) > n0. This assures that g(j) ≤ n− 1, for all j,
1 ≤ j ≤ k because either g(j) = f(j) < n0 ≤ n or g(j) = f(j)− 1 ≤ n− 1 so indeed
g : Ik → In−1. Moreover g is 1–1. For suppose g(j) = g(i) then there are two cases:
one is g(j) < n0 in which case g(j) = f(j) and g(i) = f(i) so that f(i) = f(j) so that
i = j because f is 1–1; the second case is that g(j) ≥ n0, in which case g(j) = f(j)−1
and g(i) = f(i) − 1 so that f(i) = f(j) and again we conclude i = j because f is
1–1. It now follows, by the induction hypothesis that n − 1 ≥ k or n ≥ k + 1. This
establishes P (n) for all n ∈ N by induction.

This assures us that finite cardinality behaves as one would expect. If one set A
has cardinality n then it cannot also have cardinality m 6= n where m,n ∈ N. For
supose that it did. Renaming m and n if necessary, we may suppose m > n. Then
we would have two bijections f : A → In and g : A → Im. Then f ◦ g−1 : Im → In is
a bijection and so 1–1 and this contradicts the Lemma. Therefore m = n.

It also says that N cannot be finite: if there were a 1–1 mapping of N to In for
some n then the restriction of that mapping to Im, m > n would also be 1–1 and that
is impossible by the Lemma.
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Example: For example the mapping of f : N → {2, 4, 6, 8, . . .} defined by f(n) =
2n, for all n ∈ N. Here A = N; B = {2, 4, 6, 8, . . .}. It is clear that f is 1-1 and onto
and so the whole numbers and the even numbers have equal cardinality even though
one is a proper subset of the other. This of course cannot happen with finite sets.

Definition: A set which is equinumerous with N is said to be denumerable. Any
set which is either finite or denumerable, is said to be countable. Sets that are not
countable are said to be uncountable.

What makes cardinality interesting is that there are uncountable sets and we will
discover methods to distinguish which are countable and which uncountable.

Example: We have seen that the even numbers are denumerable and an easy
argument shows that the odd numbers are countably infinite. What about the integers
Z = {. . . − 3,−2,−1, 0, 1, 2, 3, . . .}? Try f(n) = (−1)n⌊x/2⌋ where ⌊m⌋ denotes the
greatest integer less or equal m. The verification that the mapping is 1–1 and onto is
left to the reader.

Theorem 0.3. A subset of a countable set is countable.

Observe that the ∅ is considered to be finite and have 0 elements. This Theorem
says that, for every subset T of a countable set S, there is a bijection of T onto
In = {1, 2, 3, . . . , n} where n is the (finite) number of elements of S or there is a
bijection of S onto N.

Proof. Suppose that S is a countable set and T ⊆ S. Because S is countable there
exists a bijection f : S → S ′ onto a In = {1, 2, 3, . . . , n} for some n ∈ N or onto
S ′ = N. We regard In ⊆ N; indeed N = ∪nIn and so we can think of S ′ ⊆ N. If T
is void then T is countable: it has zero elements. Suppose therefore that T 6= ∅. Let
T ′ = {f(t) : t ∈ T} so that T ′ ⊆ S ′ ⊆ N. It follows that T ′ has a least element t1 by
the Well Ordering Principle. If T ′ = {t1} then T and T ′ have one element and so are
finite. (We map T to I1 = {1} in the obvious manner.) Otherwise T ′\{t1} is nonvoid
in N and has a least element t2 > t1 by the W.O.P. Possibly T ′ = {t1, t2} and this
would say that T ′ and therefore T has two elements and we can define a bijection
which takes tj ∈ T ′ to j ∈ I2. Otherwise T ′\{t1, t2} is nonvoid in N and so has a least
element t3 > t2 again by the W.O.P. Proceeding in this way we either show that T ′

and therefore T have finitely many elements or there is a strictly increasing sequence
t1 < t2 < t3 < . . . < tj < . . . and the sequence goes on forever. In the latter case we
define a mapping of g : T ′ → N which takes tj to jand that is clearly 1–1 and onto
and so g is a bijection and so T ′ is countable. But f : T → T ′ is also a bijection and
so this shows that if T is not finite it is equinumerous with N which is denumerable
and so countable. In any case T is countable.

Corollary 0.4. If S is a set and there exists an injection of S into N then S is
countable.

Proof. The set S is equinumerous with rng(f) where f : S → N is the injection. By
the previous Theorem, rng(f) is countable.
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Theorem 0.5. If A and B are countable then A×B is countable.

Recall that A×B = {(a, b) : a ∈ A and b ∈ B}.

Proof. We know that there is a bijection f : A → N and another g : B → N. Consider
the mapping

h(a, b) = 2f(a)3g(b)

so that h : A×B → N. We check that h is 1−1. To do so we note that if 2j3k = 2ℓ3m.
Then 2j−ℓ = 3m−k where we suppose that j ≥ ℓ (or otherwise interchange j and ℓ.
If j 6= ℓ then 2j−ℓ is even but 3m−k cannot possibly be an even integer (product
of odd numbers is odd). Therefore j = ℓ and so m = k. So h is 1 − 1 because
h(a, b) = h(a′, b′) implies f(a) = f(a′) and g(b) = g(b′) and f and g are themselves
1− 1 so that a = a′, b = b′. Therefore A×B has the same cardinality as some subset
of N and it is therefore countable.

Remark The essence of the proof is to find a bijection of N × N → N. Can you
do so directly? The mapping h above does not map onto N.

Theorem 0.6. The rational numbers form a countably infinite set.

Proof. Every rational number can be written uniquely ±p

q
where p and q are whole

numbers and we assume that fractions are written in the lowest terms, for example
1/2 and not 2/4. More precisely any common factors in p and q are cancelled. Integers
are written with q = 1. This shows that there is an injection f : Q → Z× N defined
by f(p/q) = (p, q) of the rationals to a subset of Z × N: p/q 7→ (p, q) and this
correspondance is 1 − 1 but not onto Z × N. It follows that the rationals form a
countably infinite set because we know that there is a bijection of the countable set
g : Z×N → N by our ealrlier theorem (about the countability of A×B) and so g ◦ f
is a 1–1 mapping of Q into N. Q is therefore countable. (An alternative argument is
give on the top of page 83 of the Lay text.)

Theorem 0.7. (Theorem 8.10, Lay) Suppose that S is a nonempty set. Then the
following are equivalent.

1. S is countable

2. There exists an injection f : S → N.

3. There exists a surjection g : N → S

Proof. We saw the equivalence of part 1 and 2 above. Let us first show that 1 ⇒ 3.
Assume therefore that S is countable. It follows that S is either denumerable or
finite. If S is denumerable then it is equinumerous with N and so there is a bijection
f : S → N and of course g = f−1 : N → S is injective. If S is finite then there exists
n ∈ N so that S ∼ In (S 6= ∅). Therefore there is a bijection h : In → S. Define
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f : N → In by f(k) = k if 1 ≤ k ≤ n and f(k) = n if k > n. Certainly f is a
surjection and therefore so is h ◦ f : N → S: define g = h ◦ f .

Conversely, suppose the f : N → S is a surjection. Define g : S → N as follows.
For each s ∈ S define g(s) = min{k ∈ N : f(k) = s} observe that {k ∈ N :
f(k) = s} 6= ∅ simply because f is onto. Therefore the Well Ordering Principle tells
us that {k ∈ N : f(k) = s} has a least element and we call that g(s). Observe
f(g(s)) = s. It follows that g : S → N is injective because g(s1) = g(s2) implies
s1 = f(g(s1)) = f(g(s2)) = s2 . It follws by the equivalence of parts 1 and 2 of this
result that S must be countable.

Theorem 0.8. If A is a countable set and for every α ∈ A, Sα is a countable set.
Then

∪α∈ASα is countable

Proof. We will show that there is a surjection f : N × N → ∪α∈ASα. This will
complete the proof because we already know that N×N is denumerable and so there
is a bijection, G : N → N × N and so f ◦ G : N → ∪α∈ASα would be surjective
and so the ∪α∈ASα would be countable by the previous result. (Note the difficulty
with counting ∪α∈ASα is that there is no way of knowing how much overlap there is
between Sα’s.)

We define f as follows. We know there is a surjection h : N → A, by the previous
result because A is a countable set. For each α ∈ A there is a surjection gα : N → Sα.
Define f : N× N → ∪α∈ASα by

f(m,n) = gh(m)(n)

We need to check that this is surjective. Suppose therefore that s ∈ ∪α∈ASα. This
means that there exists α ∈ A so that s ∈ Sα. Because h is surjective there is
m ∈ N so h(m) = α and because gh(m) = gα is surjective (onto Sα) there is n ∈ N so
that gh(m)(n) = s and this just says f(m,n) = s and this checks that f is onto and
completes the proof.

Theorem 0.9. The real numbers are an uncountably infinite set.

Proof. We shall prove that (0, 1) is not countable and that will establish the result.
We shall identify a real number x has a decimal expansion. The decimal expansion
is unique except if the expansion terminates in all zeroes or all nines. For example
0.4999999999999 . . . =0.5. We can assume that all decimal expansions that terminate
in all nines are converted to all zeroes.

Suppose that there is an enumeration f(n), n ∈ N of the reals: so that f : N →
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(0, 1) is one to one and onto. Let us list the values of f(n) in decimal form

f(1) = 0.d1,1d1,2d1,3d1,4 . . .

f(2) = 0.d2,1d2,2d2,3d2,4 . . .

f(3) = 0.d3,1d3,2d3,3d3,4 . . .

f(4) = 0.d4,1d4,2d4,3d4,4 . . .
...

...
...

where each di,j is a digit 0 ≤ di,j ≤ 9. Let us define a real number r = 0.d1d2d3d4 . . .
as follows. We shall change the digits dn,n that appear on the main diagonal to make
up the new number r. More precisely, if d1,1 ≤ 4 then we define d1 = d1,1 + 4 and
otherwise d1 = d1,1− 4. It follows that |r− f(1)| ≥ 0.3 no matter what the remaining
digits of r or f(1) are. This is because the largest change one can make in a number
by changing the digits after the tenths digit is 0.1 =0.09999999999. WE also see that
1 ≤ d1 ≤ 8 Define d2 = d2,2 + 4 if d2,2 ≤ 4 and d2 = d2,2 − 4 otherwise. Observe
that |0.d2,1d2,2 − 0.d1d2| ≥ 0.04 so that |f(2) − r| ≥ 0.03. Continue in this way. dn
is defined to be dn,n + 4 if dn,n ≤ 4 and dn = dn,n − 4 otherwise. This choice forces
r 6= f(n). Inductively we define all the digits dn of r so that |dn − dn,n| = 4 we will
have r 6= f(n). In the end we have constructed a number r, 0 < r < 1 which is not
equal to f(n) for any n and this contradicts the assumption that f enumerates (is
onto) (0,1). (0,1) is uncountable.

This is referred to as the “diagonal argument” and although the result is due to
Cantor, this proof is not. Of course by one of the problems in the homework, all real
intervals (a, b), where a < b are uncountable.

Corollary 0.10. The set of all irrational numbers in an open interval (a, b), a < b
is uncountable.

Proof. We know that (a, b) = (Q ∩ (a, b)) ∪ (Qc ∩ (a, b)) and we know (Q ∩ (a, b))
is countable as a subset of a countable set. If (Qc ∩ (a, b)) were also countable then
the union (a, b) would also be countable by our earlier result but that contradicts the
Theorem.

Recall that the power set P(s) of a set S consists of all subsets of S

Theorem 0.11. For any set S, the power set P(S) is not equinumerous with S.

Proof. The proof is by contradiction. Suppose to the contrary there is a bijection
f : S → P(S). Define

T = {s ∈ S : s /∈ f(s)}

Since f is a bijection there is t ∈ S so that f(t) = T . We ask the question is t ∈ T?
If t ∈ T then by the definition of T , t /∈ f(t) but f(t) = T and so this is absurd.
Therefore t /∈ T but then t /∈ f(t) and this assures that t ∈ T and so we have a
contradiction. There cannot be a bijection of s onot P(S).
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Remark: We have an ordering 1 < 2 < 3 < 4 < . . . < ℵ0 < |P(N)| < |P(P(N)| <
. . .. In other words we have constructed and infinite number of distinct transfinite
cardinals.

Definition: The cardinality of R is called the continuum and is written c.
It can be shown (Exercise 8.24) c = |P(N)|
Continuum Hypothesis: There is no cardinal λ so that ℵ0 < λ < c.
This conjecture is due to Cantor and it is Problem 1 of the 23 problems proposed

by David Hilbert (1862-1943) at the International Congress of Mathematicians in
Paris in 1900. It has been shown that the continuum hypothesis is consistent with the
usual axioms of set theory (Kurt Gödel, 1938) and its negation is too (Paul Cohen
1963).


