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Logic and Proof

To be able to understand mathematics and mathematical arguments, it is
necessary to have a solid understanding of logic and the way in which
known facts can be combined to prove new facts. Although many people
consider themselves to be logical thinkers, the thought patterns developed
in everyday living are only suggestive of and not totally adequate for the
precision required in mathematics. In this first chapter we take a careful
look at the rules of logic and the way in which mathematical arguments
are constructed. Section 1 presents the logical connectives that enable us
to build compound statements from simpler ones. In Section 2 we discuss
the role of quantifiers. In Sections 3 and 4 we analyze the structure of
mathematical proofs and illustrate the various proof techniques by means
of examples.

Section 1 LOGICAL CONNECTIVES

The language of mathematics consists primarily of declarative sentences.
If a sentence can be classified as true or false, it is called a statement. The
truth or falsity of a statement is known as its truth value. For a sentence to
be a statement, it is not necessary that we actually know whether it is true
or false, but it must clearly be the case that it is one or the other.
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1.1 EXAMPLES

1.2 PRACTICE
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Consider the following sentences.

(a) Two plus two equals four.
(b) Every continuous function is differentiable.
(c) x2-5x+6=0.
(d) A circle is the only convex set in the plane that has the same width

in each direction.
(e) If n is an integer greater than 2, then x" + y" = z" has no positive

integral solutions.

Sentences (a) and (b) are statements since (a) is true and (b) is
false. Sentence (c), on the other hand, is true for some x and false for
others. If we have a particular context in mind, then (c) will be a
statement. In Section 2 we shall see how to remove this ambiguity. Sen-
tences (d) and (e) are more difficult. You may or may not know whether
they are true or false, but it is certain that each sentence must be one or the
other. Thus (d) and (e) are both statements, lit turns out that (d) can be
shown to be false, and the truth value of (e) has not yet been established.]

Which of the following sentences are statements?

(a) Ifx is a real number, then xz >~ O.
(b) Seven is a prime number.
(c) Seven is an even number.
(d) This sentence is false.

In studying mathematical logic we shall not be concerned with the
truth value of any particular simple statement. To be a statement, it must
be either true or false (and not both), but it is immaterial which condition
applies. What will be important is how the truth value of a compound
statement is determined by the truth values of its simpler parts.

In everyday English conversation we have a variety of ways to
change or combine statements. A simple statement* like

It is windy.

can be negated to form the statement

It is not windy.

t It may be questioned whether or not the sentence "It is windy" is a statement since
the term "windy" is so vague, ffwe assume that "windy" is given a precise definition, then in
a particular place at a particular time, "It is windy" will be a statement. It is customary to
assume precise definitions when we use descriptive language in an example. This problem
does not arise in a mathematical context because the definitions are precise.

1.3 EXAMPLE
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The compound statement

It is windy and the waves are high.

is made up of two parts: "It is windy" and "The waves are high." These
two parts can also be combined in other ways. For example,

It is windy or the waves are high.
If it is windy, then the waves are high.
It is windy if and only if the waves are high.

The italicized words above (not, and, or, if... then, if and only if) are
called sentential connectives. Their use in mathematical writing is similar
to (but not identical with) their everyday usage. To remove any possible
ambiguity, we shall look carefully at each and specify its precise mathe-
matical meaning.

Let p stand for a given statement. Then ~p (read not p) represents
the logical opposite (negation) of p. When p is true, then ~p is false; when
p is false, then ~p is true. This can be summarized in a truth table:

where T stands for true and F stands for false.

Let p, q, and r be given as follows:

Todayis Monday.
Five is an even number.
The set of integers is countable.

Then their negations can be written as

Todayis not Monday.
Five is not an even number.

or
Five is an odd number.
Tile set of integers is not countable.

or
The set of integers is uncountable.

The connective and is used in logic in the same way as it is in
ordinary language. If p and q are statements, then the statement p and q
(called the conjunction of p and q and denoted by p ^ q) is true only when
both p and q are true and it is false otherwise.
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PRACTICE
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Complete the truth table for p ^ q. Note that we have to use four lines in
this table to include all possible combinations of truth values ofp and q.

The connective or is used to form a compound statement known as a
disjunction. In common Enghsh the word or can have two meanings. In
the sentence

We are going to paint our house yellow or green.
the intended meaning is yellow or green but not both. This is known as the
exclusive meaning of or. On the other hand, in the sentence

Do you want cake or ice cream for dessert?
the intended meaning may include the possibility of having both. This
inclusive meaning is the only way the word or is used in logic. Thus, ffwe
denote the disjunction p or q by p v q, we have the following truth table:

pvq

T
T

A statement of the form

If p, then q.
is called an implication or a conditional statement. The if-statement p in
the implication is called the antecedent and the then-statement q is called
the consequent. To decide on an appropriate truth table for implication,
let us consider the following sentence:

If it stops raining by Saturday, then I will go to the football game.

If a friend made a statement like this, under what circumstances could you
call him a liar? Certainly, if the rain stops and he doesn’t go, then he did
not tell the truth. "But what ff the rain doesn’t stop? He hasn’t said what he
will do then, so whether he goes or not, either is all right.

1,5 PRACTICE
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Although it might be argued that other interpretations make equally
good sense, mathematicians have agreed that an implication will be called
false only when the antecedent is true and the consequent if false. If we
denote the implication "if p, then q" by p ~ q, we obtain the following
table:

T
F
T
T

It is important to recogolize that in mathematical writing the
conditional statement can be disguised in several equivalent forms. Thus
the following expressions all mean exactly the same thing:

if p, then q
p implies q
p only if q
q ifp

q provided that p
q whenever p
p is a sufficient condition for q
q is a necessary condition for p

Identify the antecedent and the consequent in each of the following
statements.

(a) I£ n is an integer, then 2n is an even number.
(b) You can work here only if you have a college degree.
(c) The car will not run whenever you are out of gas.
(d) Continuity is a necessary condition for differentiability.

The statement "p if and only if q" is the conjunction of the two
implications p~q and q~p. A statement in this form is called an
equivalence and is denoted by p,~ q. In written form the abbreviation "iff"
is frequently used instead of "if and only if." The truth table for
equivalence can be obtained by analyzing the compound statement
(P ~ q) ^ (q ~ p) a step at a time.

p

T
T
F
F

q q~p (P~q) ^ (q~p)

T T T T
F F T F
T T F F
F T T T

Thus we see that p <~ q is true precisely when p and q have the same truth
values.
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1.6 PRACTICE
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Chap. 1 / Logic and Proof

Construct a truth table for each of the following compound statements.

(a) ,-~(p ^ q),~[(~p) v (~q)]
(b) ~(p v q),~[(~p) A [(~q)]
(C) ,~ (p ~ q) ,,~ [p ^ (~ q)]

In Practice 1.6 we find that each of the compound statements is true
in all cases. Such a statement is called a tautology. We shall encounter
many more tautologies in the next few sections. They are very useful in
changing a statement from one form into an equivalent statement in a
different (one hopes simpler) form. In 1.6(a) we see that the negation of a
conjunction is the disjunction of the negations. Similarly, in 1.6(b) we
learn that the negation of a disjunction is the conjunction of the negations.
In 1.6(c) we find that the negation of an implication is not another
implication, but rather is the conjunction of the antecedent and the
negation of the consequent.

Using Practice 1.6(a), we see that the negation of
The set S is compact and convex.

can be written as

Either the set S is not compact or it is not convex.
This example also illustrates that using equivalent forms in logic does not
depend on knowing the meaning of the terms involved. It is the form of
the statement that is important. Whether or not we happen to know the
definition of"compact" and "convex" is of no consequence in forming the
negation above.

Use the tautologies in Practice 1.6 to write out a negation of each
statement.

(a) Seven is prime or 2 + 2 -- 4.
(b) If M is bounded, then M is compact.
(c) If roses are red and violets are blue, then I love you.

ANSWERS TO PRACTICE PROBLEMS

1.2 (a), (b), and (a)

pAq

T
F
F
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1.5 (a) Antecedent: n is an integer
Consequent: 2n is an even number

(b) Antecedent: you can work here
Consequent: you have a college degree

(c) Antecedent: you are out of gas
Consequent: the car will not run

(d) Antecedent: differentiability
Consequent: continuity

1.6 Sometimes we condense a truth table by writing the truth values under the
part of a compound expression to which they apply.

(a) q

T F T T F F F
F T F T F T T
T T F T T T F
F T F T T T T

P

T
T
F
F

1.8

(b) q

T F T T F F F
F F T T F F T
T F T T T F FFIT F T T T T

P

T
T
F
F

P

T
T
F
F

q [p ^ (~q)]

T F T T T F F
F T F T T T T
T F T T F F F
F T T T F F T

(a) Seven is not prime and 2 + 2 ~- 4.
(b) M is bounded and M is not compact.
(c) Roses are red and violets are blue, but I do not love you.

L1 Write the negation of each statement.

(a) H is a normal subgroup.
(b) The set of real numbers is finite.
(c) Bob and Bill are over 6 feet tall.
(d) Seven is prime or five is even.
(e) If today is not Monday, then it is hot.
(f) If K is closed and bounded, then K is compact.
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1.2 Write the negation of each statement.
(a) M is an orthogonal ~natrix.
(b) G is normal and H is not regular.
(c) Today is Wednesday or it is snowing.
(d) Bob and Betty are related.
(e) If it rains today, then the roof will leak.
(f) If K is compact, then K is closed and bounded.

1.3 Identify the antecedent and the consequent in each statement.
(a) I wi~ raise the flag provided that I get there first.
(b) Normality is a sufficient condition for regularity.
(c) You can climb the mountain only if you have the nerve.
(d) lfx = 5, thenf(x) = 2.

1.4 Identify the antecedent and the consequent in each statement.
(a) I get sleepy in class whenever I stay up late.
(b) Two real symmetric matrices are congruent if they have the same rank

and the same signature.
(c) A real sequence is Cauchy only if it is convergent.
(d) f(x) = 5 provided that x > 3.

1.5 Construct a truth table for each statement.
(a) p~q
(b)
(c) [p~(q ^ ~q)],�.. ~p

1.6 Construct a truth table for each statement.
(a) ~p v q
(b) p ^ ~p
(c) [~q ^ (p~.q]~ up

1.7 Indicate whether each statement is true or false.

(a) 5 > 3 and 4 is even.
(b) 8 is prime or 4 < 9.
(c) 7 is even or 6 is prime.
(d) If 3 < 5, then 72 = 49.
(e) If 3 > 5, then 72 < 49.
(f) If 5 is prime, then 52 = 20.
(g) If 6 is odd or 4 is even, then 4 > 5.
(h) If 3 < 7 implies that 5 > 9, then 8 is prime.

1.8 Indicate whether each statement is true or false.
(a) 7 is prime and 5 is even.
(b) 7 is prime or 5 is even.
(c) 2 > 4 or 6is odd.
(d) If 3 is prime, then 2 + 2 = 5.
(e) If 2 + 2 = 5, then 3 is prime.
(f) If ~ is rational, then 3 is even.
(g) If 3 > 5 and 4 is even, then 52 _ 25.
(h) If 7 < 5 only if 6 is even, then 8 is odd.

9 Sec. 2 / Quantifiers

1.9 Use truth tables to verify that each of the following is a tautology. Parts (a)
and (b) are called commutative laws, parts (c) and (d) are associative laws, and
parts (e) and (f) are distributive laws.
(a) (p ^ q),~-(q ^ p)
(b) (p v q).~>(q v p)
(c) [p A (q A r)]<=~t(p A q) A r]
(d) [p v (q vr)]-~E(pvq)v~q
(e) [p ^ (q v O] ~ [0 ^ q) v 0 ^ r)]
(f) [p v (q ^ r)] ~ [(p v q) ^ @ v r)]

Section 2 QUANTIFIERS

In Section 1 we found that the sentence

needed to be considered within a particular context in order to become a
statement. When a s~ntence involves a variable such as x, it is customary
to use functional notation when referring to it. Thus we write

p(x): x2 - 5x + 6 = 0

to indicate that p(x) is the sentence "x2 5x + 6 = 0." For a specific
value of x, p(x) becomes a statement that is either true or false. For
example, p(2) is true and p(4) is false.

Another way to remove the ambiguity of p(x) is by using a quantifier.
The sentence

For every x, x2- 5x + 6 = 0.

is a statement since it is false. In symbols we write

v x, p(x),
where the universal quantifier V is read, "For every... ," "For all... ," "For

each... ," or a similar equivalent phrase. The sentence

There exists an x such that x2 - 5x + 6 = 0.

is also a statement, and it is true. In symbols we write

~ x ~ p(x),

where the existential quantifier 3 is read, "There exists... ," "There is at
least one... ," or something equivalent. The symbol ~ is just a shorthand
notation for the phrase "such that."
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The statement

can be written

or in the abbreviated form

There exists a number less than 7.

3x~x<7

3x<7,
where it is understood that x is to represent a number. Sometimes the
quantifier is not explicitly written down, as in the statement

Ifx is greater than 1, then x2 is greater than 1.

The intended meaning is

Vx, ifx > 1, then x2 > 1.
In general, ff a variable is used in the antecedent of an implication without
being quantified, then the universal quantifier is assumed to apply.

Rewrite each statement using 3, V, and 9, as appropriate.

(a) There exists a positive number x such that x2 = 5.
(b) For every positive number M there is a positive number N such

that N < 1/M.
(c) Ifn ~> N, then If,(x) - f(x)l ~< 3 for all x in A.

Having seen several examples of how existential and universal
quantifiers are used, let us now consider how quantified statements are
negated. Consider the statement

Everyone in the room is awake.
What condition must apply to the people in the room in order for the
statement to be false? Must everyone be asleep? No, it is sufficient that at
least one person be asleep. On the other hand, in order for the statement

Someone in the room is asleep.

to be false, it must be the case that everyone is awake. Symbohcally, if

p(x): x is awake,
then

Similarly,

~ (V x, p(x)) ~* 3 x ~ ~p (x).

11

2.3 EXAMPLES
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Let us look at several more quantified statements and derive their
negations. Notice in part (b) that the inequality "0 < 9(Y)~< 1" is a
conjunction of two inequalities "0 < 9(Y)’" and "0(Y) ~< 1." Thus its
negation is a disjunction. In a complicated statement like (c) it is helpful
to work through the negation one step at a time. Fortunately, (c) is about
as messy as it will get.

(a) Statement: For every x in A,f(x) > 5.

V x in A, f(x) > 5.

Negation: 3 x in A ~ f(x) <~ 5.

There is an x in A such that f(x) <~ 5.

(b) Statement: There exists a positive number y such that 0 < g(y) ~< 1.

3y>0 ~ 0<g(y)~<l.

Negation: Vy > 0, 9(Y) ~< 0 or 9(Y) > 1.

For every positive number y, either O(y) ~< 0 or O(Y) > 1.

(c) Statement:

Ve>03N~Vn, ifn~>N, thenVxinS, lf,(x) f(x)l<e

Negation:

3 e > 0 ~ ~ [3 N ~ V n, if n ~> N, then V x in S, I ~(x) - f(x)[ < ~]

or

3e>0~VN, ~ [V n, if n >~ N, then V x in S, I f,(x)

or

3 e > O ~ V N q n ~ ~ [if n >~ N, then V x in S, l f,(x) -- f (x)l <~]

or

3 e > 0~VN~ n~n >~ N and ~[Vx in S, If,(x) - f(x)l < ~]
or

3 ~ > 0~VN 3 n~n >~ N and 3 xin S~]f,(x)- f(x)l ~> e

Write the negation of each statement in Practice 2.2.

It is important to realize that the order in which quantifiers are used
affects the truth value. For example, when talking about real numbers, the
statement

Vx3y~y>x
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is true. That is, given any real number x there is always a real number y
that is bigger than that x. But the statement

3y=3Vx, y>x

is false, since there is no fixed real number y that is bigger than every real
number. Thus care must be taken when reading (and writing) quantified
statements so that the order of the quantifiers is not inadvertently
changed.

ANSWERS TO PRACTICE PROBLEMS

2.2 (a) 3x>0Dx2=5.
1

(b)
M

(c) V n, if n >~ N, then V x in A, I f,(x) -- f(x) l <~ 3.
2.4 (a) Vx>0, x24-5.

1
(b) 3M>O~VN>O,N>~.

(c) 3n~n~>Nand3xinA~lf,(x)--f(x)l>3.

EXERCISES

Write the negation of each statement.
(a) Some pencils are blue.
(b) All chairs have four legs.
(c) 3x> l~f(x)=3.
(d) VxinA, 3yinB~x < y< l.
(e) Vx3y~Vz, x+y+z<-..xyz.

2.2 Write the negation of each statement.
(a) Everyone likes Bob.
(b) All students on the basketball team are smart.
(c) 3xinA~f(x)> y.
(d) 3y~<2~f(y)<2org(y)>~7.
(e) Vx>l,O<f(x)<4.

2.3 Determine the truth value of each statement, assuming that x, y and z are real
numbers.
(a) 3x~Vy3z~x+y=z.
(b) 3x~VyandVz, x + y-z.
(c) Vx and V y, ~ z~xz = y.
(d) ~ x ~ V y and V z, z > y implies that z > x + y.
(e) V x, 3 y and ~ z ~ z > y implies that z > x + y.

13 Sec. 2 / Quantifiers

Determine the truth value of each statement, assuming that x, y, and z are real
numbers.
(a) VxandVy, 3z~x+y-z.
(b) Vx3y~Vz, x + y=z.
(c) 3x~Vy, 3z~xz= y.
(d) Vx~y~Vz, z>yimpliesthatz>x+y.
(e) V x and V y, ~ z ~ z > y implies that z > x + y.

Exercises 2.5 to 2.12 give certain properties of functions that we shall encounter
later in the text. You are to do two tlfings: (a) rewrite the definin~ condition in
logical symbolism using V, 3, 3, and ~, as appropriate; and (b) write the negation
of part (a) using the same symbolism. It is not necessary that you understand
precisely what each term means.

A function f is even iff, for every x, f(--x) = f(x).

A function f is periodic iff there exists a k > 0 such that, for every x,
,f(x + I0 = ,f(x).
A function f is increasing iff for every x and for every y, if x ~< y, then
f(x) <~ f(y).

A function is strictly decreasing iff for every x and for every y, if x < y, then
f(x) > f(y).

A function .f: A -~ B is injeetive iff for every x and y in A, iff(x) -- f(y), then

A function f: A -~ B is surjective iff for every y in B there exists an x in A
such that f(x) - y.

Afunction f:D-~Riscontinuousatc~Diffforevery~>Othereisa6>O
such that If(x) - f(e) l < e whenever I x - c I < 6 and x ~ D.

2.12

2.13

2.14

function f is uniformly continuous on a set S iff for every e > 0 there exists a
> 0 such that If(x) --f(Y)l < e whenever x and y are in S and Ix - Yl < 6.

The real number L is the limit of the fanction,f: D ~ R at the point c ifffor
each e > 0 there exists a ~ > 0 such that If(x) -- L[ < ~ whenever x ~D and
0<lx-cl<~.
Consider the following sentences:
(a) The nucleus of a carbon atom consists of protons and neutrons.
(b) Jesus Christ rose from the dead and is alive today.
(c) Every diflhrentiable function is continuous.
Each of these sentences has been affirmed by some people at some time as
being "true." Write an essay on the nature of truth, comparing and
contrasting its meaning in these (and possibly other) contexts. You migbt
also want to consider some of the following questions: To what extent is
truth absolute? To what extent can truth change with time? To what
extent is truth based on opinion? To what extent are people free to accept
as true anything they wish?



14 Chap. 1 / Logic and Proof

Section 3 TECHNIQUES OF PROOF: I

In the first two sections we introduced some of the vocabulary of lo~c and
mathematics. Our aim is to be able to read and write mathematics, and
this requires more than just vocabulary. It also requires syntax. That is,
we need to understand how statements are combined to form that
mysterious mathematical entity known as a proof. Since this topic tends
to be intimidating to many students, let us ease into it gently by first
considering the two main types of logical reasoning: inductive reasoning
and deductive reasoning.

3.1 EXAIVIPLE Consider the function f(n) = tl2 + n + 17. If we evaluate this function for
various positive integers, we observe that we always seem to obtain a
prime number. (Recall that a positive integer n is prime if n > 1 and its
only positive divisors are 1 and n.) For example,

f(1) = 19

f(2) = 23

f(3) = 29

f(4) = 37

f(8) = 89

f(12) = 173

f(15) = 257

and all these numbers (as well as the ones skipped over) are prime. On the
basis of this experience we might conjecture that the function f(n) =
n2 + n + 17 will always produce prime numbers when n is a positive
integer. Drawing a conclusion of this sort is an example of inductive
reasoning. On the basis of looking at individual cases we make a general
conclusion.

If we let p(n) be the sentence "n2 + n + 17 is a prime number" and
we understand that n refers to a positive integer, then we can ask, is

vn,
a true statement? Have we proved it is true?

3.2 PRACTICE

3.3 EXAMPLE
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It is important to realize that indeed we have not proved that it is
true. We have shown that

~ n ~ p(n)

is true. In fact, we know that p(n) is true for many n. But we have not
proved that it is true for all n. How can we come up with a proof? It turns
out that we cannot, since the statement "V n, p(n)" happens to be false.

How do we know that it is false? We know that it is false because we
can think of an example where n2 + n + 17 is not prime. (Such an example
is called a eotmterexample.) One such counterexample is n = 17:

172 + 17 + 17 = 17.19.

There are others as well. For example, when n = 16,

16z+ 16+17=16(16+1)+17=172,

but it only takes one counterexample to prove that "V n, p(n)" is false.

On the basis of Example 3.1 we might infer that inductive reasoning
is of little value. Although it is true that the conclusions drawn from
inductive reasoning have not been proved logically, they can be very
useful. Indeed, this type of reasoning is the basis for most if not all
scientific experimentation. It is also often the source of the conjectures
that when proved become the theorems of mathematics.

Provide counterexamples to the following statements.

(a) All birds can fly.
(b) Every continuous function is differentiable.

Consider the function o(n, m) = n2 + n + m, where n and tn are under-
stood to be positive integers. In Example 3.1 we saw that 0(16, 17) =
162 + 16 + 17 = 172. We might also observe that

9(1,2) = 1z + 1 +2-- 4 = 22

g(2,3)=22 +2+ 3 =9- 32

0(5, 6) = 52 + 5 + 6 = 36 = 62

9(12,13) = 122 + 12 + 13 = 169 = 132.

On the basis oftheseexamples (using inductive reasoning)we can formthe
conjecture"V n, q(n),’whereq(n)is the statement

o(n, n+l)=(n+l)~.
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It turns out that our conjecture this time is true, and we can prove
it. Using the familiar laws of algebra, we have

g(n,n+ l)=n2 +n+(n+ l)
=n2+2n+l
=(n+ 1)(n+l)
= (n + 1)2

[definition ofg(n, n + 1)]
[since n + n = 2hi
[by factoring]
[definition of(n + 1)2].

Since our reasoning at each step does not depend on n being any specific
integer, we conclude that "V n, q(n)" is true.

Now that we have proved the general statement " V n, q(n)," we can
apply it to any particular case. Thus we know that

g(124, 125) = 125z

without having to do any computation. This is an example of deductive
reasoning: applying a general principle to a particular solution. Most of
the proofs encountered in mathematics are based on this type of reasoning.

In what way was deductive reasoning used to prove V n, q(n)?

The most common type of mathematical theorem can be symbolized
as p ~ q, where p and q may be compound statements. To assert that
p ~ q is a theorem is to claim that p ~ q is a tautology; that is, that it is
always true. From Section 1 we know that p ~ q is true unless p is true
and q is false. Thus, to prove that p implies q, we have to show that
whenever p is true it follows that q must be true. When an implication
p ~ q is identified as a theorem, it is customary to refer to p as the
hypothesis and q as the conclusion.

The construction of a proof of the implication p ~ q can be thought
of as building a bridge of logical statements to connect the hypothesis p
with the conclusion q. The building blocks that go into the bridge consist
of four kinds of statements: (1) definitions, (2) assumptions or axioms that
are accepted as true, (3) theorems that have previously been established as
!rue, and (4) statements that are logically implied by the earlier statements
m the proof. When actually building the bridge, it may not be at all
obvious which blocks to use or in what order to use them. This is where
experience is helpful, together with perseverance, intuition, and sometimes
a good bit of luck.

In building a bridge from the hypothesis p to the conclusion q, it is
often useful to start at both ends and work toward the middle. That is, we
might begin by asking, "What must I know in order to conclude that q is
true?" Call this ql. Then ask, "What must I know to conclude that q~ is
true?" Call this q2. Continue this process as long as it is productive, thus
obtaining a sequence of implications,

¯ .. =~q~=>ql~q.

3.5 EXAMPLE
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Then look at the hypothesis p and ask, "What can I conclude from p that
will lead me toward q? Call this Pl.Then ask, "What can I conclude from
pl?" Continue this process as long as it is productive, thus obtaining

We hope that at some point the part of the bridge leaving p will join with
the part that arrives at q, forming a complete span:

Let us return to the result proved in Example 3.3 to illustrate the process
just described. We begin by writing the theorem in the form p~q.
One way of doing this is as follows: "If ,q(n, m) = n2 + n + m, then
g(n, n + 1) = (n + 1)z." Symbolically, we identify the hypothesis

p: g(n, m) = rt2 + tt + m

and the conclusion"

q:g(n,n+l)=(n+l)2.

In asking what statement will imply q, there are many answers. One
simple answer is to use the definition of a square and let

ql:g(n,n+ 1)=(n+l)(n+l).

By multiplying out the product (n + l)(n + 1), we obtain

q2: g(n, n + 1) = n2 + 2n + 1.

Now certainly q2 ~ q~ ~ q, but it is not dear how we might back up
further. Thus we turn to the hypothesis p and ask what we can conclude.
Since we wish to know something about g(n, n + 1), the first step is to use
the definition of g. That is, let

p~:g(n,n+ l)=nZ +n+(n+ l).

It is clear that pl ~ q2, so the complete bridge is now formed:

p~p~qz~q~q.

This is essentially what was written in Example 3.3.

Associated with an implication p ~ q there is a related implication
~q~ ~p, called the eontrapositive. It is easy to see using a truth table
that an implication and its contrapositive are logically equivalent. Thus
one way of proving an implication is to prove its contrapositive.
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3.6 PRACTICE

3.7 EXAMPLE

3.8 PRACTICE

3.9 EXAMPLE

3.10 PRACTICE
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(a) Use a truth table to verify that p ~ q and ~ q ~ ,-~p are logically
equivalent.

(b) Is p ~ q logically equivalent to q ~ p?

The contrapositive of the theorem "If 7tn is an odd number, then m is an
odd number" is "ff m is not an odd number, then 7m is not an odd
number" or, equivalently, "If m is an even nmnber, then 7m is an even
number." (Recall that a number m is even i fit can be written as 2k for some
integer k. If a number is not even, then it is odd. It is to be understood
here that we are talking about integers.) Using the contrapositive, we can
construct a proof of the theorem as follows:

Hypothesis: rn is an even number.

m -- 2k for some integer

7m = 7(2k)

7m = 2(7k)

7k is an integer

[definition]

[known property of multiplication]

[known property of multiplication]

[since k is an integer].

Conclusion: 7m is an even number
[since 7m is 2 times the integer 7k].

This is much easier than trying to show directly that 7m being odd implies
that m is odd.

Write the contrapositive of each implication in Practice 1.5.

In Practice 3.6(b) we saw that p ~ q is not logically equivalent to
q ~ p. The implication q ~ p is called the converse of p ~ q. It is possible
for an implication to be false, while its converse is true. Thus we cannot
prove p ~ q by showing q ~- p.

The implication "Ifm2 > 0, then m > 0" is false, but its converse "Ifm > 0,
then mz > 0" is true.

Write the converse of each implication in Practice 1.5.

Another implication that is closely related to p=>q is the inverse
~p ~ ~q. The inverse implication is not logically equivalent to p ~ q,
but it is logically equivalent to the converse. In fact, the inverse is the
¢ontrapositive of the converse.
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3.11 PRACTICE Use a truth table to show that the inverse and the converse of p ~ q are
logically equivalent.

Looking at the contrapositive form of an implication is a useful toot
in proving theorems. Since it is a property of the logical structure and
does not depend on the subject matter, it can be used in any setting
involving an implication. There are many more tautologies that can be
used in the same way. Some of the more common are listed in the next
example.

3.12 EXAMPLES The following tautologies are useful in constructing proofs. The first two
indicate, for example, that an "if and only if" theorem p ~ q can be proved
by establishing p ~ q and its converse q ~ p or by showing p ~ q and its
inverse ~ p ~ ~ q. The letter c is used to represent a statement that is
always false. Such a statement is called a contradiction. While this list of
tautologies need not be memorized, it will be helpful if each tautology is
studied carefully to see just what it is saying.

(a) (p,=> q)-~ [(p ~ q) ^ (q~p)]
(b) (p.*~q)*~e.[(p~q) ^ (~p~ ~q)]
(c) (p~q)e*.(~q~ ~p)
(d) p v ~p

(p ^ ~ p)-~ c
(~p~c).*~p
[(p ^ ~ q) =*. c] c~. (p =~ q)
[p^
[~q ^ (p~q)]~ ~p
[~p A (p v q)]=q
(p ^ q)~p
[(p~q) A (q~r)]~(p~r)
[(Pt ~ P2) ^ (P2 ~ P~) ^ "’" ^ (P,, ~ ~ P,,)] ~ (P~ ~ p,,)

(n) [(p ^ q) ~ r] ,e~ [p ~ (q ~ r)] ,
(o) [(p ~ q) ^ (r ~ s) ^ (p v r)] ~(qvs)
(p) [p~(q v 0] -c*- [(p ^ ’~q)~r]
(q) [(p ~ r) ^ (q ~ r)] ~ [(p v q) ~ r]

TO PRACTICE PROBLEMS

3.2 (a) Any flightless bird, such as an ostrich. (b) The absolute value function is
continuous for all real numbers, but it is not differentiable at the origin.
The general rules about factoring polynomials were applied to the specific
polynomial n~ + n + (n + 1).
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3.6

3.8

3.10

3.11

q

T T T F T F
F F T T F F
T T T F T T
F T T T T T

(a) p

T
T
F
F

q

T T T T
F F F T
T T F F
F T T

(b) No, p

T
T
F

(a) If 2n is an odd number, then n is not an integer.
(b) If you do not have a college degree, then you cannot work here.
(c) If the car runs, then you are not out of gas.
(d) If a function is not continuous, then it is not differentiable.
(a) lf2n is an even number, then n is an integer.
(b) If you have college degree, then you can work here.
(c) If the car does not run, then you are out of gas.
(d) If a function is continuous, then it is differentiable.

q

T T T F
F T T T
T F T F
F T T T

p

T
T
F
F

Write the contrapositive of each implication.
(a) If all roses are red, then all violets are blue.
(b) H is normal ff H is not regular.
(c) If K is closed and bounded, then K is compact.
Write the converse of each implication in Exercise 3.1.

Write the inverse of each implication in Exercise 3./
Provide a counterexample of each statement.
(a) For every real number x, if x2 > 4 then x > 2.
(b) For every positive integer n, n2 + n + 41 is prime.
(c) Every triangie is a right triangle.

21 Sec, 4 / Techniques of Proof: I1

3.5

3.6

3.7

3.8

(d) No integer greater than 100 is prime.
(e) Every prime is an odd number.
(f) For every positive integer n, 3n is divisible by 6.
(g) No rational number satisfies the equation x3 + (x - 1)2 : x2 + 1.
(h) No rational number satisfies the equation x4 + (i/x) - ~,/~+ 1 = O.

Letfbe the function given byf(x) - 3x -- 5. Use the contrapositive implica-
tion to prove: If xI # x2, thenf(x~) #f(x2).
Use the contrapositive implication to prove: Ifn2 is an even number, then n is
an even number. (Use the fact that a number is odd iff it can be written as
2k + 1 for some integer k.)
In each part, a list of hypotheses is given. These hypotheses are assumed to
be true. Using tautologies from Example 3.12, you are to establish the
desired conclusion. Indicate which tautology you are using to justify each
step.
(a) Hypotheses: r~ ~s, t~s

Conclusion: r ~ ~ t
(b) Hypotheses: r, ~t, (r ^ s)~t

Conclusion: ~ s
(c) Hypotheses: r ~. ~s, ~r ~ ~t, ~t ~ u, v ~ s

Conclusion: ~v v u
Repeat Exercise 3.7 for the following hypotheses and conclusions.
(a) Hypotheses: ~r, (~r ^ s)~r

Conclusion: ~s
(b) Hypotheses: ~t, (r v s) ~ t

Conclusion: ~s
(c) Hypotheses: r~ ~s, t~u, s v t

Conclusion: r v u

Section 4 TECHNIQUES OF PROOF: II

Mathematical theorems and proofs do not occur in isolation, but always
in the context of some mathematical system. For example, in Section 3
when we discussed a conjecture related to prime numbers, the natural
context of that discussion was the positive integers. In Example 3.7 when
talking about odd and even numbers, the context was the set of all
integers. Very often a theorem will make no explicit reference to the
mathematical system in which it is being proved; it must be implied from
the context. Usually, this causes no difficulty, but if there is a possibility
of ambiguity, the careful writer will explicitly name the system being
considered.

When dealing with quantified statements, it is particularly important
to know exactly what system is being considered. For example, the
statement
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is true in the context of the positive numbers but is false when considering
all real numbers. Similarly,

3x~x2=25 and x<3

is false for positive numbers and true for reals. When we introduce set
notation (in Chapter 2) it will become easier to be precise in indicating the
context of a particular quantified statement. For now, we shall have to
write it out with words.

To prove a universal statement

V x, p(x),
we begin by choosing an arbitrary member x from the system under
consideration and then show that statement p(x) is true. The only
properties that we can use about x are those properties that apply to all
the members of the system. For example, if the system consists of the
integers, we cannot use the property that x is even, since this does not
apply to all the integers.

To prove an existential statement

~ x ~ p(x),
we have to prove that there is at least one member x in the system for
which p(x) is true. The most direct way of doing this is to construct
(produce, guess, etc.) a specific x that has the required property. Unfor-
tunately, there is no sure-fire way to always find a particular x that will
work. If the hypothesis in the theorem contains a quantified statement,
this can sometimes be helpful, but often it is just a matter of working on
both ends of the logical bridge until you can get them to meet in the
middle.

To illustrate the process of writing a proof with quantifiers, consider the
following

THEOREM: For every e > 0 there exists a 6 > 0 such that

1 -- ~ < x < 1 + ~    implies that    5 - ~ < 2x + 3 < 5 + ~.

We are asked to prove that something is true for each positive number
e. Thus we begin by letting ~ be an arbitrary positive number. We need to
use this e to find a positive 6 with the property that

1--~<x<l+6 implies that 5--e<2x+3<5+e.

Let us begin with the consequent of the implication. We want to have

5--~<2x+3<5+s.
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This will be true if

2-e<2x<2+~,

and this in turn will follow from

Thus we see that choosing 6 to be e/2 will meet the required condition. In
writing down the proof in a formal manner we would simply set ~ equal to
e/2 and then show that this particular 6 will work.

Proof: Let e be an arbitrary positive number and let 6 = e/2. Then
~ is also positive and whenever

1--,~<x<l+6

we have

so that

1 }<x<l+~,

and

2-e<2x<2+e

as required. IIt
5--e<2x+3<5+e,

In some situations it is possible to prove an existential statement in
an indirect way without actually producing any specific member of the
system. One indirect method is to use the contraposifive form of the
implication and another is to use a proof by contradiction.

The two basic forms of a proof by contradiction are based on
tautologies (f) and (g) in Example 3.12. Tautology (f) has the form

(~p~c)’~p.

If we wish to conclude a statement p, we can do so by showing that the
negation of p leads to a contradiction. Tautology (g) has the form

[(p ^ ~q)~c]’~(p~q).

If we wish to conclude that p implies q, we can do so by showing that p and
not q leads to a contradiction. In either case the contradiction can involve
part of the hypothesis or some other statement that is known to be true.

The symbol | is used to denote the end of a formal
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4.3 EXAMPLE

4,4 EXAMPLE
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Use truth tables to verify that (~p~c),~p and [(p ^ ~q)~c].~
(p ~ q) are tautologies.

To illustrate an indirect proof of an existential statement, consider the
following:

THEOREM: Let f be a continuous function. If ~0~ f(x) dx # O,
then there exists a point x in the interval [0, 1] such that f(x) # 0.

Symbolically, we have p ~ q, where

p:     x) dx ,/: 0

q: ~ xin [0, 1] ~f(x) � O.

The co ntrapositive imphcation, ~ q ~ ~ p, can be written as

If for every x in [0, 1], f(x) = 0, then f(x) dx = O.

Tins is much easier to prove. Instead of having to conclude the existence
of an x in [0, 1] with a particular property, we are given that every x in
[0, 1] has a different property. Indeed, the proof now follows directly from
the definition of the integral since each of the terms in any Riemann sum
will be zero. (See Chapter 7.)

To illustrate a proof by contradiction, consider the following:

THEOREM: Let x be a real number. If x > 0, then 1Ix > O.

Symbolically, we have p ~ q, where

p:x>0

1
q: ->0.

x

Tautology (g) in Example 3.12 says that p ~ q is equivalent to (p ^ ~ q) ~
c. Thus we begin by supposing x > 0 and l/x <~ O. Since x > 0, we can
multiply both sides of the inequality l/x <~ 0 by x obtain

But (x)(1/x) = 1 and (x)(O) = O, so we have 1 ~< O, a contradiction to the
(presumably known) fact that 1 > O.

4.5 EXAMPLE

~RACTICE
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Another tautology in Example 3.12 that deserves special attention is
statement (q):

[(p r) ^ (q r)] [(p v q) r3.
Some proofs naturally divide themselves into the consideration of two (or
more) cases. For example, integers are either odd or even. Real numbers
are positive, negative, or zero. It may be that different arguments are
required for each case. It is tautology (q) that shows us how to combine
the cases.

Suppose we wish to prove that, if x is a real number, then x ~< Ix[.
Symbolically, we have s ~ r, where

s: x is a real number

r: x ~< Ixl.
First, we recall the definition of absolute value:

if x ~> 0
ifx<O.

Since tins definition is divided into two parts, it is natural to divide our
proof into two cases. Thus statement s is replaced by the equivalent
disjunction p v q, where

p:x>~O and q:x<0.

Our theorem now is to prove (p v q) ~ r, and this we do by showing that
(p ~ r) ^ (q ~ r). The actual proof could be written as follows:

Let x be an arbitrary real number. Then x ~> 0 or x < O. If x ~> O,
then by definition x = Ix!. On the other hand, ifx < O, then --x >
O, so that x < 0 < --x = Ix!. Thus, in either case, x ~< Ixl. |

In proving a theorem that relates to factoring positive integers greater
than 1, what two cases might reasonably be considered?

An alternative form of proof by cases arises when the conclusion of
an implication involves a disjunction. In this situation tautology (p) of
Example 3.12 is often helpful:

[(p ^ q) r].

Consider the following:

THEOREM: If the sum of a real number with itself is equal to its
square, then the number is 0 or 2.
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In symbols we have p ~ (q v r), where

p:XWX~X2

q:x--O

r:x=2.

To do the proof, we shall show that (p ^ ~q)~r.

Proof: Suppose that x+x=x2 and x�0. Then 2x=xa and
since x � 0, we can divide by x to obtain 2 - x. |

Suppose that you wish to prove the statement: If B is both open and
closed, then B = ~ or B = X. Use tautology (p) of Example 3.12 to state
two different equivalent statements that could be proved instead.

We have now considered the most common forms of mathematical
proof, except for proofs by induction. Induction proofs will be considered
later in Chapter 3 in connection with the natural numbers. But before we
close this chapter on logic and proof, a few informal comments are in
order.

In formulating a proof it is important that a mathematician (that
includes you!) be very careful to use sound logical reasoning. This is what
we have tried to help you develop in this first chapter. But when writing
down a proof it is usually unnecessary--and often undesirable--to include
all the logical steps and details along the way. The human mind can only
absorb so much information at one time. It is necessary to skip lightly
over the steps that are well understood from previous experience so that
greater attention can be focused on the part that is really new. Of course,
the question of what to include and what to skip is not easy and depends to
a considerable extent on the intended audience. The proofs included in
this text will tend to be more complete than those in more advanced books
or research papers, since the reader is presumably less sophisticated. As a
student, you should also practice filling in more of the details, ff for no
other reason than to make sure that the details really do fill in. (At least be
prepared to show your instructor why your "clearly" is clear and your "it
follows that" really does follow.)

Throughout the rest of the book you will have the opportunity to
read and write a great many proofs. Make the most of it ! When you read a
proof, analyze its structure. See what tautologies, if any, have been
used. Note the important role that definitions play. Often a proof will be
little more than unraveling definitions and applying them to specific
cases. From time to time we shall point out the method to be used in a
proof to help you see the structure that we shall be following. And when
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you begin to write proofs yourself, do not get discouraged when your
instructor returns them covered with comments and corrections. The
writing of proofs is an art, and the only way to learn is by doing.

ANSWERS TO PRACTICE PROBLEMS

4.2
(’~p~c) "*> p

~] T

T[~]          F

q [(p A ~q)’~>c] -*> (p~q)

T TFFTF T T
F TTTFF T F
T FFFTF T T
F FFTTF T T

P

T
T
F
F

4.6 The positive integers greater than 1 are either prime or composite. They are
also either odd or even. Either way of separating the integers into two cases
could be reasonable, depending on the context.

4.g If B is both open and closed and B # ~Z~, then B = X. If B is both open and
closed and B # X, then B -- ~.

Prove: There exists an integer n such that nz + 3n/2 = 1. Is this integer
unique?

Prove: There exists a rational number x such that x2 + 3x/2 = 1. Is this
rational number unique?

4.3 Prove: For every real number x > 3, there exists a real number y < 0 such
that x - 3y/(2 + y).
Prove: For every real number x > 1, there exist two distinct positive real
numbers y and z such that

z2+9
6z

4.5 Prove: If x is rational and y is not rational, then x + y is not rational.
(Recall that a number is rational iffit can be expressed as the quotient of two
integers.)

4.6 Prove: If x is a real number, then I x - 21 ~< 3 implies that - 1 ~< x ~< 5.
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4.7

4.8

4.9

4.10

4.11

4.12

4.13

Pr°ve: If x2 + x - 6 >~ O, then x <~ 3orx~>2.
Prove: lfx/(x - 1) ~< 2, then x < 1 or x ~> 2.

ffrove or give a counterexample: There do not exist three consecutive even
integers a, b, and c such that a2 + b2 _ ez.

Prove or give a counterexample: There do not exist three consecutive odd
integers a, b, and c such that a2 + b2 _ e2.

Prove or give a counterexample: For every positive integer n, n2 + 3n + 8 is
even.

Prove or give a counterexample: For every positive integer n, nz + 4n + 8 is
even.
Assume that the following two hypotheses are true: (I) If the basketball
center is healthy or the point guard is hot, then the team will win and the
fans will be happy; and (2) if the fans are happy or the coach is a millionaire,
then the college will balance the budget. Derive the following conclusion: If
the basketball center is healthy, then the college will balance the budget.
Using letters to represent the simple statements, write out a formal proof in
the format of Exercise 3.7.


