
Introduction to Mathematical Analysis

Math 3190

Text: Introduction to Analysis, 5th ed., by Edward D. Gaughan, American Mathe-
matical Society, isbn-10: 0821847872 / isbn-13: 9780821847879 / Edition: 5th Revised
edition

Reference: Analysis with an Introduction to Proof., 2nd edition, Steven R. Lay,
Prentice Hall.
Catalogue Description: This course is intended to introduce students to higher math-
ematics. The techniques of proving theorems, including proofs by induction, will be em-
phasized. The course will include elementary set theory and equivalence relations and
a discussion of the real number system. Proofs of some basic theorems from algebra,
calculus or number theory will be studied.

Chapter -1: Logic and Proof : This initial material is drawn from Steven Lay’s
Chapter 1.

Section 1: Connectives the goal, at least initially, is to take complex, compound
statements and decompose them into simpler parts with the goal of extablishing the
truth or falsity of the initial compound statement in terms of the constituent parts. A
sentence which can be classified as either true or false is said to be a statement. For
example

The number 3 is even.
We know that even means being of the form 2n where n is an integer. Of course the

example statement is false. Another example is
There are infinitely many pairs of integers (p, p + 2) so that both p and p + 2 are

prime.
Although no one knows whether this statement is true or false we all believe that it

is one or the other. So it too is a statement. We do not include sentences like “This
statement is false.” We should also be aware that some statements like x2 + 2x ≥ 0 may
be statements if the context is clear, that is if the domain of x is known. If the statement
were “ For all x ≥ 0, x2 + 2x ≥ 0 then it is true but if no quantifier on x is given, then
it may be false x = −1 for example. We will use p,q,r . . . to denote statements and
we are interested in deciding the truth and falsity of compound statements made up of
simpler statements by joining them with logical connectors. The logical connectors are
as follows.

Negation: The negation of the statement “The number 3 is even” is “The number
3 is odd” because odd is equivalent to not even (not a multiple of 2). We write the
negation of p and p with the understanding that p is true exactly when p is false and
conversely p̃ is false exactly when p is true. We illustrate this with a simple truth table

p ∼ p
T F
F T

Statements like “She is my mother” can be negated by “She is not my mother” Others
like “It is warm” may be more tricky and require a definition of warm. (Is “It is warm”
a statement?)
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Conjunction: The logical version of “and” is called conjunction.
Example: A cow is four legged and a ruminant. In other word to be a cow requires

both having four legs and chewing the cud. Something that has four legs but does not
chew its cud, like a dog is not a cow.

Another example is getting credit for this course requires both paying tuition and
doing the course work.

Example:Suppose that f is continuous on the interval [a, b] and differentiable on the
interval (a, b). This is a conjunction of two statements that we encountered in Calculus
I. If, for a particular f you can verify the conjunction then the Mean Values Theorem
says: There exists c, a < c < b so that f(b)− f(a) = f ′(c)(b− a) For example f(x) = |x|
on [-1,1] does not satisfy one of the hypotheses and does not satisfy the conclusion.

In symbols we write p ∧ q for the conjunction of two statements p and q. The truth
table in this case is

p q p ∧ q
T T T
T F F
F T F
F F F

Notice that the truth table contains 4 = 22 rows because there are 2 choices for each
of 2 statements

Disjunction: English has two forms of disjunction (“or”). I’ll have Pepsi or Coke
means one or the other and usually not both. (“exclusive disjunction.”) In logic “or”
includes both. I will ask my mother or father for the family car would mean that asking
either the mother or the father is enough but asking both is possible as well. The
statement x 6= 0 or y 6= 0 means x2 + y2 > 0.

In symbols we write p ∨ q for the disjoin of p and q. The truth table in this case is

p q p ∨ q
T T T
T F T
F T T
F F F

Implication: Example: If it rains then I will take an umbrella. Regrettably there
are many ways to state an implication.

• f is differentiable implies f is continuous.

• If f is differentiable then f is continuous.

• f is continuous whenever it is differentiable. f is continuous if it is differentiable.

• f is differentiable only if it is continuous.

• For f to be continuous, it is sufficient for f to be differentiable.
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• For f to be differentiable, it is necessary that f be continuous.

In symbols we write p ⇒ q. The truth table in this case is

p q p ⇒ q
T T T
T F F
F T T
F F T

The understanding is that if the antecedent (the “if” part) is false then whether the
consequent (the “then”) part is true or false does not contradict the implication. For
example. If you won a million dollars this morning then you will give each class mate
one thousand dollars is regarded as a true statement simply because the hypothesis is
almost certainly false. Of course if you had won the million and didn’t share then it
would be false.

Equivalence The compound statement (p ⇒ q)∧ (q ⇒ p) is abbreviated p ⇔ q and
is read p if and only if q or p is equivalent to q. For example f is an increasing function
if and only if −f is a decreasing function. The truth table in this case is

p q p ⇒ q q ⇒ p p ⇔ q
T T T T T
T F F T F
F T T F F
F F T T T

Thus the statement p ⇔ q is true exactly when p and q are either both true or both
false.

Example: Show that p ⇒ q ⇔ (∼ q ⇒∼ p

p q p ⇒ q ⇔ ∼ q ⇒∼ p
T T T T F T F
T F F T T F F
F T T T F T T
F F T T T T T

where we have shortened the table slightly by indicating the truth values under the
equivalence sign.

Example: Show that if n ∈ Z (n is an integer) and n2 is even then n is even.
Here p is the statement: A given integer squared n2 is even; and q is the statement:

n is even and we are to show p ⇒ q. We do a “proof by contradiction” or in other words
∼ q ⇒∼ p. By the preceding example these two are equivalent. Assume ∼ q that is n is
not even or in other words n is odd. The means that n = 2m + 1 (an even integer plus
one) for some integer m. Then n2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1 and so is odd (an
even integer plus one). Thus (∼ q ⇒∼ p) and so we have contradicted p namely that n2

is even.
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Exercise: Use proof by contradiction to show that, whenever n is an integer and 7
divides n2 then 7 divides n.

Observe that 7 divides an integer m means m = 7k for some integer k. For example
7 divides -42.

Section 2: Quantifiers: A sentence like x − x2 ≤ 0 is not a statement until x is
specified. We therefore think of it as a statement p(x). For example p(2) is true but
p(1/2) is false.

There are two common quantifiers: Existential and Universal. For example the
sentence, “There exists a real number x so that x− x2 ≤ 0 is a statement which is true.
In symbols we write : ∃x in R so that x−x2 ≤ 0. The sentence, “For all real x, x−x2 ≤ 0
” is also a statement but it is false. In symbols, we write: ∀x in R x − x2 ≤ 0.

Examples: ∃x so that x3 + x + 5 = 0.
∀x, 0 ≤ x, we have x ≥ sin x.

∀ǫ > 0, ∃δ > 0 so that 0 < |x| < δ implies |
sin x

x
− 1| < ǫ.

∀x > 0,∃n in N (the whole numbers) so that 0 < 1/n < x < n.
Negation It is often convenient to negate a compound statement.
Examples Negate the statement “Bob and Joe took their drivers test.” to get “Bob

or Joe did not take his drivers test.” In general we have ∼ (p ∧ q) is equivalent to
(∼ p) ∨ (∼ q). In other words conjunction changes to disjunction and conversely. This
can be checked with a truth table.

p q ∼ (p ∧ q) | ⇔ (∼ p) ∨ (∼ q)
T T F T T F F F
T F T F T F T T
F T T F T T T F
F F T F T T T T

Similarly ∼ (p ∨ q) is equivalent to (∼ p) ∧ (∼ q).
Example: Negate the sentence: “Every American adult drives ” “There is an Ameri-

can adult who does not drive” Observe that to negate “every” requires only once instance.
To show that a statement about every American adult is false only requires finding one
exception.

Example: ∀x in R, x − x2 ≤ 0 has negation ∃x in R so that x − x2 > 0. Notice the
original statement is false and so the negation is true.

The negation of

∀x in A, p(x) is ∃x in A,∼ p(x)

∃x in A, p(x) is ∀x in A,∼ p(x)

Example: ∀ǫ > 0, ∃n > 0 so that, for all x > n, | arctan x − π/2| < ǫ. The negation is:
“∃ǫ > 0 so that for all n > 0 there is x > n so that | arctan(x) − π/2| ≥ ǫ.


