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Test 2, Math 1860 Section 011 or 012 (Circle One.)
Oct 2013 Review Name

A non graphing calculator and a formula sheet are permitted.

1. Do the series converge or diverge? Give reasons for your answer If a series
converges, find its sum.

(a) b+ +2+ 2+ 2+ + ...
This is a geometric series with a = 5 and r = 2/3. Because —1 < r < 1 the
series converges to

5, 10,20 40 8 160 o _ 5 .
39 27 81 243 7 1—-r 1-2/3
2" 4 5(—1)"
b) D ——
n=1
This is the sum of two geometric series
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The first series has a = 2/3 and r = 2/3 and so the first series converges
(=1 < r < 1); the second series has a = —5/3 and r = —1/3 so that the
second series also converges and
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2. Determine whether the integral is convergent or divergent. Evaluate it if it is

convergent.
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Therefore the integral is convergent to 5.

3. Determine whether the series is convergent or divergent. Explain your reasoning.
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Solution: Compare the series to the p-series >~ | 3/n? which is convergent
because p = 2 > 1. Since 3/(n* + 4) < 3/n® we see that the given series
converges by the comparison test.
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Compare to the p series Y °°  1/n'/2 where p = 1/2 < 1 and is therfore
divergent. Try limit comparison
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Because the limit is 1 and 0 < 1 < oo the two series converge or diverge
together by the limit comparison test. Because Y - 1/ n'/? diverges so does
the given series.
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The root test applies here
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and since 1/3 < 1 the series converges (absolutely).

Alternatively (n —1)/(3n+5) <n/3n = 1/3 and so by the comparison test
applies
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and the latter series is sa geometric series with r = 1/3 which is convergent
(—1 <r<1).
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The integral test works here but it is faster to use the ratio test.
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and 1/e < 1 and so the series converges by the ratio test.
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4. Determine whether the series is absolutely convergent, conditionally convergent

or divergent. Explain your reasoning.

00 1 n+1
(2) ;(271)—1

This is an alternating series and so the alternating series test applies. Since
the b, = 1/(2n — 1 decrease to 0 as m goes to infinity, the alternating
series test says that the series converges. Does it converge absolutely? That
is, does the series Y >°  1/(2n — 1) converge? Since 1/(2n — 1) > 1/2n and
the series >~ 1/2n = (1/2) > 1/n diverges (harmonic series or p-series
with p = 1) so that ), 1/(2n—1) diverges by comparison and the original
series converges conditionally but not absolutely.
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Here the terms do not converge to 0: lim,, ., n!/10™ = co (see section 10.1
of Thomas’s 12th edition.) Therefore the series diverges. Alternately one
could use the ratio test: |apy1/a,| = (n+ 1)/10 which diverges.

5. (a) Find the series’ radius and interval of convergence. For what values of x does

the series converge (b) absolutely, (c) conditionally
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Apply the root test
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By the root test the series converges absolutely if |z + 3|/2 < 1 which means
—2<zx+3<2o0r -5 <x< —1and it diverges if x+ < —5 or x > —1. The
radius of convergence is 2 (half the length of the interval). Check the end points.
If x = —1 then the power series is
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which is the alternating harmonic series and it converges by the alternating series
test or by an example done in class. If x = —5 then the power series is
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and this is (-1) time the harmonic series and so it is divergent. The interval of
convergence for the power series is therefore —5 <z < —1.



