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The percentage value of each question is indicated in the margin.

1. Express the integrand as a sum of partial fractions and evaluate the integral

∫

2t2 + 2t− 1

t3 + t2
dt

(17)

Apply partial fractions. The degree on the top is 2 which is strictly smaller than
the degree on bottom and so division is not required. We factor the bottom and
expand by partial fractions

2t2 + 2t− 1

t3 + t2
=

2t2 + 2t− 1

t2(t+ 1)
=

A

t
+

B

t2
+

C

t+ 1

Solve for the constants: Multiply both sides t2(t+ 1): 2t2 + 2t− 1 = At(t+ 1) +
B(t+ 1) +Ct2 = (A+C)t2 + (A+B)t+B. Comparing the coefficients we have

A + C = 2
A + B = 2

B = −1

so that B = −1, A = 3 and C = −1. Therefore

4t2 + t− 2

t2(t+ 1)
=

3

t
− 1

t2
− 1

t+ 1

This can be checked by finding a common denominator:

3

t
− 1

t2
− 1

t+ 1
=

3t(t+ 1)− (t+ 1)− t2

t2(t+ 1)
=

2t2 + 2t− 1

t2(t+ 1)

It checks. Integrate.

∫

2t2 + 2t− 1

t3 + t2
dt =

∫

3

t
dt−

∫

t−2 dt−
∫

1

t+ 1
dt

= 3 ln |t|+ 1

t
− ln |t+ 1|+ C

Check by differentiation:

d

dt
[3 ln |t|+ 1

t
− ln |t+ 1|] = 3

t
− t−2 − 1

t+ 1

and so it checks.
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2. Evaluate the improper integral (if it exists)
∫

∞

2

1

x2 + 4
dx (12)

∫

∞

2

1

x2 + 4
dx = lim

t→∞

∫ t

2

1

x2 + 4
dx

= lim
t→∞

1

2
arctan

(x

2

)

|t2

= lim
t→∞

1

2

[

arctan

(

t

2

)

− arctan(1)

]

=
1

2

[π

2
− π

4

]

=
π

8

The improper integral exists and is π/8.

3. Determine whether the series converges or diverges. If it converges then find its
sum.(12)

∞
∑

n=0

(

5

3n
+

(−1)n+1

4n

)

This is the sum of two geometric series, one with r = 1/3 and the other with
r = −1/4 and so both are convergent (since |r| < 1 in each case). Using the
formula a/(1− r) for the sum of a geometric series we have

∞
∑

n=0

(

5

3n
+

(−1)n+1

4n

)

=
5

1− 1/3
+

−1

1− (−1/4)

15

2
− 4

5
=

67

10

4. Do the series converge or diverge? Give reasons for your answers.(9 ea)

(a)
∞
∑

n=3

√

n− 3

n5 + 2n2 + 1

Compare to the series
∑

∞

n=3

√

n
n5 =

∑

∞

n=3

1

n2 which is a p-series with p =
2 > 1 and so is convergent. Try direct comparison.

√

n− 3

n5 + 2n2 + 1
≤

√

n

n5 + 2n+ 3
≤

√

n

n5
=

1

n2

This shows that the given series is smaller than a convergent p-series and
is therefore convergent by the Direct Comparison test. (Limit Comparison
also applies.)

(b)
∞
∑

n=2

(sinn)2

n2 + 5
√
n

We note that (sinn)2 ≤ 1 and so comparison works here. We compare to
∑

∞

n=2

1

n2 which is a p-series with p = 2 > 1 and so is convergent. Try Direct
Comparison

(sinn)2

n2 + 5n
≤ 1

n2 + 5n
≤ 1

n2
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and so the given series is smaller than a convergent p-series and so it must
converge.

(c)
∞
∑

n=2

n− 3

n2 + 4n

Compare to the series
∑

∞

n=2

1

n
which is the harmonic series and it diverges.

(It is also a p-series with p = 1 ≤ 1 and so divergent.) Direct Comparision
does not seem very simple here and so we try Limit Comparison.

lim
n→∞

n− 3

n2 + 4n
1/n

= lim
n→∞

n(n− 3)

n2 + 4n
= 1

(by l’Hospital’s rule or by factoring n2 from top and bottom). Since 0 <
1 < ∞ Limit Comparision says that the series either both converge or both

diverge. Since
∑

∞

n=2

1

n
diverges, the given series,

∞
∑

n=2

n− 3

n2 + 4n
also diverges.

5. Which of the series converge absolutely, converge (conditionally) or diverge? Give
reasons for your answers. (16)

(a)
∞
∑

n=3

(−1)n lnn

n

It does not look like this series converges absolutely because
∞
∑

n=3

∣

∣

∣

∣

(−1)n lnn

n

∣

∣

∣

∣

=
∞
∑

n=3

lnn

n
≥

∞
∑

n=3

1

n

The latter series is a p-series with p = 1 ≤ 1 and so is divergent. It follows
that the given series does not converge absolutely by Direct Comparison.
To determine if it converges conditionally we apply the alternating series
test. Check that the terms go to 0: by l’Hospital’s Rule

lim
n→∞

lnn

n

(

=
∞
∞

)

= lim
n→∞

1/n

1
= lim

n→∞

1

n
= 0

and also that it decreases:

d

dn

lnn

n
=

(1/n)n− lnn

n2
=

1− lnn

n2

which is negative for n > e and so the sequence of terms decreases once
n > e. The alternating series test says the series converges at least condi-
tionally and since we saw that it did not converge absolutely it is indeed
only conditionally convergent.

(b)
∞
∑

n=0

(−1)n

n1/n

We recall that limn→∞ n1/n = 1. (See Section 10.1.) Therefore the terms
in this series do not go to 0 and so it diverges by the nth term test for
divergence. The alternating series test leads to the same conclusion.
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6. (a) Find the series’ radius and interval of convergence.(16)

∞
∑

n=1

1

n2n
(x− 3)n

The root test applies here.

lim
n→∞

∣

∣

∣

∣

1

n2n
(x− 3)n

∣

∣

∣

∣

1/n

= lim
n→∞

1

(n2n)1/n
|x−3|n)1/n = lim

n→∞

1

n1/n2
|x−3| = 1

2
|x−3|

and so the series converges absolutely, by the root test if (1/2)|x − 3| < 1
and that is the same as −2 < x − 3 < 2 or 1 < x < 5. The radius of
convergence is half the interval length and that is 2. It remains to check the
end points, x = 1 and x = 5. If x = 5

∞
∑

n=1

1

n2n
(x− 3)n =

∞
∑

n=1

1

n2n
(5− 3)n =

∞
∑

n=1

1

n

and that is the harmonic series which is divergent. If x = 1 then

∞
∑

n=1

1

n2n
(x− 3)n =

∞
∑

n=1

1

n2n
(1− 3)n =

∞
∑

n=1

(−1)n

n

and that is the alternating harmonic series which converges (by the alternat-
ing series test) but only conditionally because the harmonic series diverges.

(b) For what values of x does the series above converge absolutely.

The series converges absolutely if 1 < x < 5.

(c) For what values of x does the series above converge conditionally but not
absolutely.

The series converges conditionally but not absolutely at x = 1.


