Page 1 of 5 Pages Test 1, Math 1860 Section 020
Feb. 2014 Solutions Name

1. Evaluate the integral and simplify your answer.
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Substitute u = 2 + cos z so that du = —sinz and
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/w = —/—du: —Inju|+C=—-In|2+cosz|+C
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and this can be checked by differentiation: —(d/dx)In|2+4cosz| = sinx/(2+
cos ). Therefore
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2. Evaluate the integral.
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We integrate by parts (that is [udv = ww — [wvdu). Let u = Int and
dv = t*dt so that du = (1/t)dt and v = t3/3. Therefore
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(b) / x cos 3z dx

We again integrate by parts (that is [uwdv = wv — [vdu. Let u = x and
dv = cos 3z dx so that du = dx and v = (1/3) sin 3z. Therfore
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This can be checked by differentiation: (d/dz)[5x sin 3z+3 cos 3z] = & sin 3a+

T cos3x — % sin 3.



(c) /(sin 30)? do
Use a trig identity (sin36)? = (1/2)(1 — cos 66)
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and this can be checked by differentiation (d/df)[% —(1/12)sin66] = (1/2)—
(1/2) cos 66 = (sin 36)? again using that trig identity.
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Trig substitution. Let x = 2tan so that dz = 2(sec)?df and V4 + 22 =
2sec . Therefore
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Let u = sec so that du = secftanf and use the identity (tanf)?* =
(secf)? —1=u?—1.
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and it remains to write the answer in terms of the variable x. We draw the
triangle and see that sec = (4 + 22)1/2/2 so that
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We can check by differentiation
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It checks



3. Set up an integral for the area of the surface generated by revolving the curve
y=cosz, —/2 <z < m/2, about the x—axis. Do NOT evaluate the integral.

We need dy/dxr = —sinz. The area is
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4. Compute the volume of the solid generated by revolving the region bounded by
the curves y = (z — 2)? and y = z about the y—axis. (Suggestion: Sketch R.)

The region R is bounded below by the parabola y = (z—2)? which is the standard
parabola y = 22 shifted two units right and R is bounded above by the line y = x.
The two curves intersect when r = (r—2)%? or 0 = (22— 4w +4)—x = 22 —br+4 =
(x —4)(z — 1) that is when 2 = 1 and 2 = 4. The region is Type I (not Type II)
because it is bounded above and below by simple curves and not on the left and
right. Therefore we need to integrate in x and we should use cylindrical shells
and the volume is

4 4
/ 2rx(r — (z — 2)%) dx = 27?/ v(x — 2 +4r —4) do
1 1

4
= 27?/ —23 + 52% — dx dx
1

1 5 Y45
= o |—=at+ 223 — 222 _ BT
47 3 .

5. The solid lies between planes perpendicular to the z—axis at + = —1 and x = 1.
The cross-sections perpendicular to the x—axis are circular disks whose diameters
run from the parabola y = 22 to the parabola y = 2 — 22.

The cross section are disks and so A(z) = 7r? when r is a function of z. Indeed
r is half the distance from 2 — 22 to 2 which is 2 — 22%: r = 1 — 2. The volume
is therefore
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The solid is also a solid of revolution about the axis ¥y = 1 and so can be done by
the disk method: [*, 7(2 — 2% — 1)%dx.
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