Page 1 of 5 Pages	Test 1 , Math 1860	Section 02	21
Sept. 2013	Practice	Name	
There are five pages (two	sided); the back page i	s for rough work.	Point values of

questions are indicated in the margins; 100 points are possible.

1. Evaluate the integral and simplify your answer.

(a)
$$\int_{\ln 2}^{\ln 25} e^{-x/2} dx$$
 (6)

(b)
$$\int_0^{\infty} \frac{\sin x \, dx}{2 + \cos x} \tag{8}$$

2. Evaluate the integral.

(a)
$$\int_{1}^{e} t^2 \ln t \, dt$$
(9)

(b)
$$\int x \cos 3x \, dx$$
 (10)

(c)
$$\int (\sin 3\theta)^2 d\theta$$
 (12)

(d)
$$\int \frac{x^3}{\sqrt{4+x^2}} dx$$

- 3. Set up an integral for the area of the *surface* generated by revolving the curve $y = \cos x, -\pi/2 \le x \le \pi/2$, about the x-axis. Simplify but do NOT evaluate the integral.
- 4. Compute the volume of the solid generated by revolving the region bounded by the curves $y = (x - 2)^2$ and y = x about the y-axis. (Suggestion: Sketch R.) (17)
- 5. Find the volume of the solid that lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross-sections perpendicular to the x-axis are circular disks whose diameters run form the parabola $y = x^2$ to the parabola $y = 2 - x^2$. (17)

(12)

(9)