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1. Evaluate the integral.
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Substitute u = 2 + 3% so that du = 3e3* dx so that
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Integrate by parts. Let u = t? so that dv = et and du = 2t dt and v = —e~

Plugging into the formula ([ udv = uv — [ vdu), we have

/t%—t dt = t*(—e ") — /Zt(—e_t)dt

Integrate by parts again. Let u = t so that dv = e~ 'dt, du = dt and

v = —e~t. Therefore

/t%%dt = —tlet 42 [t(—et)—/—etdt}

= et —2et -2t + (0 = —¢7t [t2 + 2t + 2]

and we can check by differentiation: by the product rule
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(c) /(sin 22)%(cos 22)% dx

There is an odd power of cos2x and so we substitute u = sin2x so that
du = 2 cos 2x dr. We further use the trig identity (cos2x)? = 1 — (sin 2z)? =

1 — u? so that
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d [—e '[P +2t+2]] = —e 20+ 2]+ e " [ + 2t + 2] = 7
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u’ — —uﬂ = g(sin 27)% — E(sin 32)° + C
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Check by differentiation.

d |1 1 3 5
. [E(sin 27)% — 1—O(sin 27)°| = g(sin 27)%(cos 27)2 — E(sin 22)*(cos 27)2

= (sin2x)*cos 2z [1 — (sin 295)2}
(

sin 22)?(cos 2z)?

(d) /(cot 0)? dx

Here we use the identity (cot 6)? = (cscf)? — 1.
/(cot0)2dx = /(CSCQ)2 —1ldx =—cot20 —0+C
and we can check by differentiation.

d 1 o 1 2 _ 2
T {5 tan 26 — «9} = i(sec 20)%(2) — 1 = (tan 20)

by that same trig identity.
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A trig substitution z = 3sinf is appropriate. Then dr = 3cosfdf and
(9 — 2%)1? = 3cos b
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/mdl’ = /W?)COSQdQ
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= §/(se(:9)2d(9 = §tanc9+C’

We now draw a right angle triangle to try and discover what tanf is in
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/9 - x4

terms of x. It is opposite divided by adjacent or x divided by /9 — z2.
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and we can check this by differentiation: By the quotient rule
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It checks.



2. Find the length of the curve y = (1/3)(z% 4+ 2)%2, from z = 1 to x = 2. (13)
We need ' = (1/3)(3/2)(2? + 2)/22z = x(2? + 2)'/2. The length of the curve is
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= / 1+ 2%de = {x#——x?’
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3. Set up an integral for the area of the surface generated by revolving the curve
x=1y? 1 <y <3, about the y—axis. Do NOT evaluate the integral. (10)

The surface area of a surface of rotation about the y—axis is
3 3 3
/ 2rx/1+ (/)2 dy = 27T/ v/ 1+ (2y)2dy = 27T/ y* /14 dy2 dy
1 1 1

4. Consider the region bounded by the curves y = sinz, 0 < z < 7 and y = 0.
Find the volumes of the solids generated when that region is rotated about the
specified axes. (Suggestion: Sketch R.)
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(a) about the z—axis. ' T x 7 T\

Sketch. The volume is, by the method of washers.

™ iy 1 ™ 1
/ m(sinz)? dx = E/ 1—cos2zdr = ~ |z — =sin2z| =m—~sin2r—0=r
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(b) about the y—axis. (Set up an integral for the volume but do NOT evaluate.)
The volume is, by the method of cylindrical shells

™
/ 2mx sinx dx
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