Page 1 of 5 PagesTest 1A, Math 1860Section 0212/13/14SolutionsName

There are five pages (two sided); the back page is for rough work.

1. Evaluate the integral.

(a)
$$\int_{0}^{\ln 2} \frac{e^{-x}}{2 + e^{-x}} dx \text{ (Simplify your answer.)}$$
(11)
Substitute $u = 2 + e^{-x}$ so that $du = -e^{-x} dx$ so that

$$\int_{0}^{\ln 2} \frac{e^{-x}}{2 + e^{-x}} dx = -\int_{x=0}^{x=\ln 2} \frac{1}{u} du$$

$$= -\ln |u||_{x=0}^{x=\ln 2}$$

$$= -\ln |2 + e^{-x}||_{0}^{\ln 2}$$

$$= -\ln |2 + e^{-\ln 2}| + \ln |2 + e^{0}| = -\ln |2 + 1/2| + \ln |2 + 1| = \ln \frac{6}{5}$$

and this can be checked by differentiation:

$$\frac{d}{dx}[-\ln|2+e^{-x}|] = -\frac{1}{2+e^{-x}}(e^{-x}(-1)) = \frac{e^{-x}}{2+e^{-x}}$$
(b) $\int t^2 e^{2t} dt$
(10)

Integrate by parts. Let $u = t^2$ so that $dv = e^{2t}$ and du = 2t dt and $v = (1/2)e^{2t}$. Plugging into the formula $(\int u \, dv = uv - \int v \, du)$, we have

$$\int t^2 e^{2t} \, dt = \frac{t^2}{2} e^{2t} - \int t e^{2t} \, dt$$

Integrate by parts again. Let u = t so that $dv = e^{2t} dt$, du = dt and $v = (1/2)e^{2t}$. Therefore

$$\int t^2 e^{2t} dt = \frac{t^2}{2} e^{2t} - \left[\frac{t}{2}e^{2t} - \frac{1}{2}\int e^{2t} dt\right] = \frac{t^2}{2}e^{2t} - \frac{t}{2}e^{2t} + \frac{1}{4}e^{2t} + C = e^{2t}\left[\frac{t^2}{2} - \frac{t}{2} + \frac{1}{4}\right]$$

and we can check by differentiation: by the product rule

$$\frac{d}{dt} \left[e^{2t} \left[\frac{t^2}{2} - \frac{t}{2} + \frac{1}{4} \right] \right] = e^{2t} \left[t - \frac{1}{2} \right] + e^{2t} 2 \left[\frac{t^2}{2} - \frac{t}{2} + \frac{1}{4} \right] = t^2 e^{2t}$$
 It checks.

(10)

(c)
$$\int (\cos 3x)^2 (\sin 3x)^3 dx$$

There is an odd power of $\sin 3x$ and so we substitute $u = \cos 3x$ so that $du = -3 \sin 3x \, dx$. Further we use the identity $(\sin 3x)^2 = 1 - (\cos 3x)^2 = 1 - u^2$ so that

$$\begin{aligned} \int (\cos x)^2 (\sin x)^3 \, dx &= -\frac{1}{3} \int u^2 (1-u^2) \, du \\ &= -\frac{1}{3} \int u^2 - u^4 \, du \\ &= -\frac{1}{9} u^3 + \frac{1}{15} u^5 + C = -\frac{1}{9} (\cos 3x)^3 + \frac{1}{15} (\cos 3x)^5 + C \end{aligned}$$

Check by differentiation.

$$\frac{d}{dx} \left[-\frac{1}{9} (\cos 3x)^3 + \frac{1}{15} (\cos 3x)^5 \right]$$

= $-\frac{1}{9} 3 (\cos 3x)^2 (-3\sin 3x) + \frac{1}{15} 5 (\cos 3x)^4 (-3\sin 3x)$
= $(\cos 3x)^2 \sin 3x \left[1 - (\cos 3x)^2 \right] = (\cos 3x)^2 (\sin 3x)^3$

(10) (d)
$$\int (\tan 2\theta)^2 dx$$

Here we use the identity $(\tan 2\theta)^2 = (\sec 2\theta)^2 - 1$.

$$\int (\tan 2\theta)^2 \, dx = \int (\sec 2\theta)^2 - 1 \, dx = \frac{1}{2} \tan 2\theta - \theta + C$$

and we can check by differentiation.

$$\frac{d}{d\theta} \left[\frac{1}{2} \tan 2\theta - \theta \right] = \frac{1}{2} (\sec 2\theta)^2 (2) - 1 = (\tan 2\theta)^2$$

by that same trig identity.

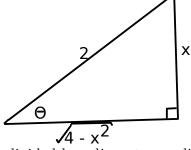
(13) (e)
$$\int \frac{1}{(4-x^2)^{3/2}} dx$$

A trig substitution $x = 2\sin\theta$ is appropriate. Then d

A trig substitution $x = 2\sin\theta$ is appropriate. Then $dx = 2\cos\theta d\theta$ and $(4-x^2)^{1/2} = 2\cos\theta$

$$\int \frac{1}{(4-x^2)^{3/2}} dx = \int \frac{1}{(2\cos\theta)^3} 2\cos\theta \,d\theta$$
$$= \frac{1}{4} \int (\sec\theta)^2 \,d\theta = \frac{1}{4}\tan\theta + C$$

We now draw a right angle triangle to try and discover what $\tan \theta$ is in



terms of x. It is opposite divided by adjacent or x divided by $\sqrt{4-x^2}$.

$$\int \frac{1}{(4-x^2)^{3/2}} \, dx = \frac{1}{4} \frac{x}{\sqrt{4-x^2}} + C$$

and we can check this by differentiation:

$$\frac{d}{dx}\frac{1}{4}\frac{x}{\sqrt{4-x^2}} = \frac{1}{4}\frac{(4-x^2)^{1/2}-x(1/2)(4-x^2)^{-1/2}(-2x)}{((4-x^2)^{1/2})^2}$$
$$= \frac{1}{4}\frac{(4-x^2)^{1/2}(4-x^2)^{1/2}+x^2}{(4-x^2)^{3/2}} = \frac{1}{(4-x^2)^{3/2}}$$

It checks.

2. Find the length of the curve $x = (1/3)(y^2 + 2)^{3/2}$, from y = 0 to y = 3. (13) We need $x' = (1/3)(3/2)(y^2 + 2)^{1/2}2y = y(y^2 + 2)^{1/2}$. The length of the curve is

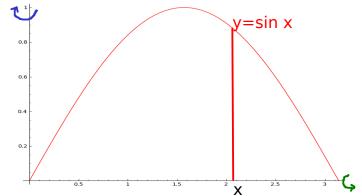
$$\int_0^3 \sqrt{1 + (x')^2} \, dy = \int_0^3 \sqrt{1 + y^2(y^2 + 2)} \, dy$$
$$= \int_0^3 \sqrt{1 + 2y^2 + y^4} \, dy = \int_0^3 1 + y^2 \, dy = \left[y + \frac{1}{3}y^3\right]_0^3 = 3 + \frac{1}{3}3^3 = 12$$

3. Set up an integral for the area of the *surface* generated by revolving the curve $y = x^{5/2}, 1 \le x \le 3$, about the *x*-axis. Do NOT evaluate the integral. (10)

The surface area of a surface of rotation about the x-axis is

$$\int_{1}^{3} 2\pi y \sqrt{1 + (y')^2} \, dx = 2\pi \int_{1}^{3} x^{5/2} \sqrt{1 + (5x^{3/2}/2)^2} \, dx = 2\pi \int_{1}^{3} \sqrt{x^5(1 + \frac{25}{4}x^3)} \, dx$$

4. Consider the region bounded by the curves $y = \sin x$, $0 \le x \le \pi$ and y = 0. Find the volumes of the solids generated when that region is rotated about the specified axes. (Suggestion: Sketch R.)



(a) about the \underline{x} -axis. Sketch. The volume is, by the method of washers.

$$\int_0^{\pi} \pi(\sin x)^2 \, dx = \frac{\pi}{2} \int_0^{\pi} 1 - \cos 2x \, dx = \frac{\pi}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\pi} = \pi - \frac{1}{2} \sin 2\pi - 0 = \pi$$

(b) about the <u>y-axis</u>. (Set up an integral for the volume but do NOT evaluate.) The volume is, by the method of cylindrical shells

$$\int_0^{\pi} 2\pi x \sin x \, dx$$

(23)