Final Review, Math 1860 Thomas Calculus Early Transcendentals, 12 ed

6. Applications of Integration:

- 5.6 (Review Section 5.6) Area between curves y = f(x) and y = g(x), $a \le x \le b$ is $\int_a^b |f(x) g(x)| dx$ and similarly for x = f(y) and x = g(y).
- 6.1 Volumes by slices: $\int_a^b A(x) dx$ where A(x) is the area of the cross section perpendicular to the x-axis. Special case is the solid of rotation obtained by rotating the region between curves y = f(x) and y = g(x), $a \le x \le b$ about the x-axis:

$$\int_a^b \pi |f(x)^2 - g(x)^2| \, dx.$$

What happens in the case the axis of rotation is y = 3? There is an analogous formula obtained by interchanging x and y. Example: The region between the curves $x = y^2$ and y = x - 2 is rotated about the y-axis. Find the volume of the solid generated.

- 6.2 The method of cylindrical shells: the region between curves y = f(x) and y = g(x), $a \le x \le b$ about the y-axis: $\int_a^b 2\pi x [f(x) g(x)] dx$. What happens when the axis of rotation is x = -2? Again interchanging x and y gives an analogous formula. Example: Rotate the region in the previous example around the x-axis.
- 6.3 Arc Length. The curve y = f(x), $a \le x \le b$ has length

$$\int_a^b \sqrt{1 + (f'(x))^2} \, dx$$

6.4 Area of Surfaces of Rotation: The curve y = f(x), $a \le x \le b$ is totated about the x axis. Find the area of the surface.

$$2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^2} \, dx$$

7. Transcendental Functions:

- 7.1 The **Natural Logarithm** $\ln x = \int_{1}^{x} (1/t) dt$ has has the property $\ln(xy) = \ln x + \ln y$ etc. $(d/dx) \ln u = (1/u) du/dx$. What is $\int \tan x \, dx$?
- 7.1 e^x , the **Natural Exponential** is the inverse of $\ln x$: $e^{\ln x} = x = \ln(e^x)$. $(d/dx)e^u = e^u du/dx$ and we saw $exp(x) = e^x$ if x is rational and so for all
- 7.1 General logs and exponentials. Differentiate $y = 3^{\sec x}$. or $y = \log_2 \sqrt{x}$.

7.3 Hyperbolic Functions: $\cosh x = \frac{e^x + e^{-x}}{2}$; $\sinh x = \frac{e^x - e^{-x}}{2}$ and $\tanh x = \frac{\sinh x}{\cosh x}$. 8. Techniques of Integration:

- 8.1 Integration by parts: $\int u \, dv = uv \int v \, du$. On p 407, what is u and dv in questions 1-24?
- 8.2 Integration of powers of Trig functions Identities:

(a)
$$(\sin x)^2 + (\cos x)^2 = 1$$

(b) $(\cos x)^2 = \frac{1}{2}(1 + \cos 2x)$
(c) $(\sin x)^2 = \frac{1}{2}(1 - \cos 2x)$
(d) $(\sec x)^2 = (\tan x)^2 + 1$
(e) $(\csc x)^2 = (\cot x)^2 + 1$
(f) $\sin 2x = 2 \sin x \cos x$

(g)
$$\cos 2x = (\cos x)^2 - (\sin x)^2$$

$$\int (\sin x)^m (\cos x)^n \, dx$$

Cases: m is odd $(u = \cos x)$; n is odd $(u = \sin x)$; m and n even

$$(\cos x)^2 = \frac{1}{2}(1 + \cos 2x) \quad (\sin x)^2 = \frac{1}{2}(1 - \cos 2x)$$

8.2 Integration of powers of Trig functions

$$\int (\tan x)^m (\sec x)^n \, dx$$

If n is even substitute $u = \tan x$. If m is odd then substitute $u = \sec x$. Also

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

Also

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

8.3 Trig Substitution

For Integrals Involving	Substitute	Use the Identity
$\sqrt{a^2 - x^2}$	$x = a\sin\theta, dx = a\cos\theta d\theta$	$\sqrt{a^2 - x^2} = a\cos\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta, dx = a (\sec \theta)^2 d\theta$	$\sqrt{a^2 + x^2} = a \sec \theta$

8.4 Partial Fractions. 1. Divide; 2. Factor divisor 3. Expand by partial fractions 4. Solve for coefficients 5. Integrate.

8 Evaluate

$$\int x \arctan x \, dx =$$

$$\int (\cos x)(\sin x)^6 \, dx =$$

$$\int (\cos x)^4 \, dx =$$

$$\int (\tan x)^3 \, dx =$$

$$\int \frac{\sqrt{1-v^2}}{v^2} \, dv =$$

$$\int \frac{1+x^2}{(1+x)^3} \, dx$$

8.7 Improper integrals. Type I and II. $\int_{1}^{\infty} \frac{1}{x^{p}} dx < \infty$ if and only if p > 1.

1. Comparison Test. Assume $0 \le f(x) \le g(x)$. Then $\int_a^{\infty} g(x) dx < \infty$ implies $\int_a^{\infty} f(x) dx < \infty$ OR $\int_a^{\infty} f(x) dx = \infty$ implies $\int_a^{\infty} g(x) dx = \infty$ 10. Series:

10.1 Sequences

- (a) $\lim_{n \to \infty} \frac{\ln n}{n} = 0$ (b) $\lim_{n \to \infty} n^{1/n} = 1$
- (c) $\lim_{n \to \infty} x^{1/n} = 1$
- (d) $\lim_{n \to \infty} x^n = 0$ if |x| < 1. (e) $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ (f) $\lim_{n \to \infty} \frac{x^n}{n!} = 0$

2. Series.

- 10.2 Geometric series $a + ar + ar^2 + ar^3 + ... = a/(1-r)$.
- 10.2 Telescoping series.
- 10.2 *n*th term test for divergence. $\lim_{n \to \infty} a_n \neq 0$
- 10.3 Integral Test
- 10.3 *p*-series $\sum_{n=1}^{\infty} 1/n^p$ converges iff p > 1.
- 10.4 Comparison Test $\sum_n^\infty 1/(n^2+n)$

- 10.4 Limit Comparison Test. $\sum_{n=1}^{\infty} 1/(n^2 n)$
- 10.6 Conditional or absolute convergence?
- 10.5 Alternating Series Test. Is $\sum_{n=0}^{\infty} (-1)^{n-1} / \sqrt{n}$ conditionally convergent? AST is only for conditional convergence.
- 10.6 Ratio Test. $\lim_{n \to \infty} |a_{n+1}/a_n|$
- 10.6 Root Test. $\lim_{n} |a_n|^{1/n}$
- 10.7 Power series $\sum_{n=0}^{\infty} c_n (x-a)^n$. Radius of convergence and interval of convergence. Ratio or root test. Check end points?

10.8 Integration and differentiation of power series: $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$
$$\int f(x) \, dx = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}$$

All three power series have the same radius of convergence.

- 10.8 The geometric series and power series. For example, $1/x = 1/(1 + (x 1)) = 1 (x 1) + (x 1)^2 (x 1)^3 + \dots$ (Here r = -(x 1) and a = 1. Convergence if |r| = |x 1| < 1.
- 10.9 Taylor series and Maclaurin series (a = 0)

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

and Taylor polynomials, $T_N(x)$ of degree N is $P_N(x) = \sum_{n=0}^N \frac{f^{(n)}(a)}{n!} (x-a)^n$

10.9 Common Maclaurin series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} + \dots$$

10.10 Integration of power series like that of e^{x^2}

Parametric and Polar Curves.

11.1 Parametric Curves. Graphing

- 11.2 Parametric Curves and Calculus. $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$. Tangent line to a parametric curve. Length (compare to Section 6.3) $\int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$
- 11.3 Polar Coordinates
- 11.4 Polar Coordinates. Graphing. Circles $(r = \text{constant}, r = a \cos \theta \ r = a \sin \theta)$ and cardioids $(r = a(1 \pm \cos \theta) \text{ or } r = a(1 \pm \sin \theta))$ and the flowers like $r^2 = \sin 3\theta$.

11.5 Area in polar coordinates
$$\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta$$

 \mathbb{R}^3

- 12.1 Distance between points.
- 12.1 Equation of a sphere centered at (4,-1,3) and radius 8.
- 12.2 Vectors. Length and direction. Unit vectors. Force, displacement and velocity.
- 12.3 Dot product. Algebraic and geometric difinitions. Angle between vectors.
- 12.3 Component of \vec{b} along \vec{a} : $\operatorname{comp}_{\vec{a}}\vec{b} = (\vec{a} \cdot \vec{b})/|\vec{a}|$. Projection of \vec{b} along \vec{a} : $\operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\vec{a}$.
- 12.4 Cross product. Algebraic and geometric definitions. $\vec{a} \times \vec{b}$ is perpendicular to \vec{a} and \vec{b} and by the right hand rule. Length is the area of the parallelogram.
- 12.4 Triple vector product $\vec{a} \cdot (\vec{b} \times \vec{c})$. Take absolute value of this real number to get the volume of the parallelepiped determined by the 3 vectors.
- 12.4 $\vec{a} \cdot \vec{b}$ is a real number; $\vec{a} \times \vec{b}$ is a vector.
- 12.5 Equation of a plane through three points P Q and R. The normal is $\vec{PQ} \times \vec{PR}$.
- 12.5 Parametric equation of the line through P(a, b, c) and Q is $\langle x, y, z \rangle = \langle a, b, c \rangle + t \vec{PQ}$. Here $\vec{PQ} = \langle d_1, d_2, d_3 \rangle$ is the direction vector of the line and we have $x = a + td_1$, $y = b + td_2$ and $z = c + td_3$ if we write out the components.
- 12.5 The symmetric equations of the same line are

$$\frac{x-a}{d_1} = \frac{y-b}{d_2} = \frac{z-c}{d_3}$$