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6. Applications of Integration:
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(Review Section 5.6) Area between curves y = f(z) and y = g(x), a < x < b is
fab |f(z) — g(z)| dz and similarly for z = f(y) and = = g(y).

Volumes by slices: f: A(z) dx where A(x) is the area of the cross section perpen-
dicular to the z-axis. Special case is the solid of rotation obtained by rotating the
region between curves y = f(z) and y = g(z), a < x < b about the z-axis:

b
| @ - gyl da.

What happens in the case the axis of rotation is y = 37 There is an analogous
formula obtained by interchanging x and y. Example: The region between the
curves = y? and y = x — 2 is rotated about the y-axis. Find the volume of the
solid generated.

The method of cylindrical shells: the region between curves y = f(x) and y = g(x),

a < z < b about the y-axis: fab 2nzx|f(x) — g(x)]dz. What happens when the axis
of rotation is x = —27 Again interchanging x and y gives an analogous formula.
Example: Rotate the region in the previous example around the z-axis.

Arc Length. The curve y = f(x), a <z < b has length
b
| VIFF@r

Area of Surfaces of Rotation: The curve y = f(x), a < x < b is totated about the
x axis. Find the area of the surface.

27 [ 1F@WVITT (PP da

7. Transcendental Functions:

The Natural Logarithm Inz = ["(1/t) dt has has the property In(zy) = Inz +
Iny ete. (d/dx)Inu = (1/u)du/dx. What is [ tanz dx?

e®, the Natural Exponential is the inverse of Inz: e®® = 2 = In(e®). (d/dx)e* =
e'du/dx and we saw exp(x) = e” if x is rational and so for all

General logs and exponentials. Differentiate y = 3%¢*. or y = log, /.

e’ +e” et —e’ " sinh
Hyperbolic Functions: coshx = +T; sinhz = —5 and tanh x =

coshz
8. Techniques of Integration:



8.1 Integration by parts: f uwdv = uv— f vdu. On p 407, what is v and dv in questions
1-247

8.2 Integration of powers of Trig functions Identities:
(a) (sinz)?+ (cosz)? =1

(b) (cosx)? = %(1 + cos 2x)

(c) (sinz)* = %(1 — €08 27)
(d) (secz)? = (tanz)? + 1

(e) (cscx)? = (cotz)? +1

(f) sin2z = 2sinxcosx

(g) cos2z = (cosx)? — (sinz)?

/ (sin )™ (cos z)" dx

Cases: m is odd (u = cosz); n is odd (u = sinz); m and n even
1 o, 1
(cosx)* = 5 —(1+4cos2x) (sinz)” = 5(1 — cos 2x)

8.2 Integration of powers of Trig functions

/ (tan z)™ (sec )" da

If n is even substitute v = tanz. If m is odd then substitute u = secz. Also

/secxdaz =In|secx + tanz| + C

Also
/secxd:c =In|secx + tanz| + C

8.3 Trig Substitution

For Integrals Involving Substitute Use the Identity
Va2 — a2 r=asinf, dv =acosfdfd a?— 22 =acosb

Vva? 4+ 22 r=atan®, dv = a(sec)?df a2+ 12 = asecl

8.4 Partial Fractions. 1. Divide; 2. Factor divisor 3. Expand by partial fractions 4.
Solve for coefficients 5. Integrate.




8 Evaluate

/:varctana:dm =

/ (cosz)(sinz)®dr =

/(cosx)4 der =
/(tan:v)g dex =

/ V1—2?
——dv
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8.7 Improper integrals. Type I and II. / — dx < oo if and only if p > 1.
1

P

1. Comparison Test. Assume 0 < f(z) < g(z). Then [~ g(z)dr < oo implies
[ f(z)dr < 0o OR [ f(x)dz = oo implies [~ g(z) dz = oo

10. Series:

10.1 Sequences

n—oo

(d) lim 2" =0if || < 1.
n—oo

(e) lim (1 + f) =e"
n—o00 n

O By =0

2. Series.
10.2 Geometric series a + ar + ar’ +ar® +... =a/(1 — 7).

10.2 Telescoping series.

10.2 nth term test for divergence. lim,, a,, # 0
10.3 Integral Test

10.3 p-series »_>°1/n® converges iff p > 1.
10.4 Comparison Test Y 7 1/(n? 4+ n)



10.4 Limit Comparison Test.Y - 1/(n? —n)
10.6 Conditional or absolute convergence?

10.5 Alternating Series Test. Is > >°(—1)""'/\/n conditionally convergent? AST
is only for conditional convergence.

10.6 Ratio Test. limy, |a,11/ay|
10.6 Root Test. lim,, |a,|"/™

10.7 Power series > 2 ¢,(z — a)". Radius of convergence and interval of convergence.
Ratio or root test. Check end points?

10.8 Integration and differentiation of power series: f(z) =>""" c.(x —a)"

f@) = Y nede—a)!

oo e .
/f(x)dx = C’+;n+1($—a) +1

All three power series have the same radius of convergence.

10.8 The geometric series and power series. For example, 1/z = 1/(1 4+ (z — 1)) =
l—(x—1)+(x—1)?>—(r—1)*+... (Here r = —(z — 1) and a = 1. Convergence
if |r] =]z —1] < 1.

10.9 Taylor series and Maclaurin series (a = 0)

() (g
Zf '<)(:1:—a)”
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and Taylor polynomials, Ty (z) of degree N is Py(z) = 320, 1@ (x —a)”

n!

10.9 Common Maclaurin series:

N 2 "
e = l+o+5+...—+
21 n!

o . 1'2 N $4 N N (_1)nl.2n N

r = -t =+ .. 4 —— ...

21 " 4l (2n)!

) B 3 I‘S (_1)nx2n+1

sinx = x—g—i—ﬁ—l—...—i— (2n+1)! + ..

10.10 Integration of power series like that of e’

Parametric and Polar Curves.

11.1 Parametric Curves. Graphing
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Parametric Curves and Calculus. @ = dy/dt
de  dx/dt

b
Length (compare to Section 6.3) / V(@ ()2 + (y(t))2 dt

. Tangent line to a parametric curve.

Polar Coordinates

Polar Coordinates. Graphing. Circles (r =constant. r = acosf r = asinf) and
cardioids (r = a(1 4 cos @) or r = a(1 £ sin#)) and the flowers like r* = sin 36.

Area in polar coordinates /B %f(@)2 de

R3 )

Distance between points.

Equation of a sphere centered at (4,-1,3) and radius 8.

Vectors. Length and direction. Unit vectors. Force, displacement and velocity.
Dot product. Algebraic and geometric difinitions. Angle between vectors.
Corilponent of b along a: Compag = (a- l;)/|c_i| Projection of b along a: proj,;l; =
- b

JapP ™

ST

Cross product. Algebraic and geometric definitions. a x b is perpendicular to @
and b and by the right hand rule. Length is the area of the parallelogram.

Triple vector product @- (b x &). Take absolute value of this real number to get the
volume of the parallelepiped determined by the 3 vectors.

@-bis areal number; @ x b is a vector.
Equation of a plane through three points P () and R. The normal is PZ) x PR.

Parametric equation of the line through P(a, b, c) and Q is (x,y, z) = {(a, b, c>+tP_Q.
Here P(Q) = (dy,ds,ds) is the direction vector of the line and we have z = a + td;,
y = b+ tdy and z = ¢ + tds if we write out the components.

The symmetric equations of the same line are

r—a y—b z-—c

dy dy ds




