(4)

1. Find the length of the curve $x = t^2/2$, $y = (2t+1)^{3/2}/3$, $0 \le t \le 4$. Express your answer as a definite integral; do NOT evaluate.

We compute the derivatives x' = t and $y' = (3/2)(2t+1)^{1/2}2/3 = (2t+1)^{1/2}$ so that the length of the curve is

$$\int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}} dt = \int_{0}^{4} \sqrt{(t)^{2} + ((1+2t)^{1/2})^{2}} dt = \int_{0}^{\pi} \sqrt{t^{2} + 2t + 1} dt$$

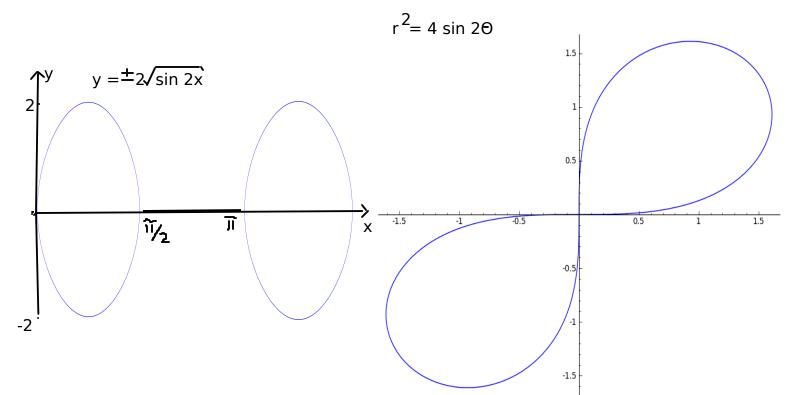
(and this could be evaluated using the identity $t^2 + 2t + 1 = (t+1)^2$ but that is not required here.)

2. Replace the polar equation $r = 8 \sin \theta$ with an equivalent Cartesian equation. Then describe or identify the graph.

Multiply by r: $r^2 = 8r \sin \theta$ and use the conversions $r^2 = x^2 + y^2$ and $y = r \sin \theta$ so that we have $x^2 + y^2 = 8y$. Subtract 8y from both sides and complete the square: $x^2 + y^2 - 8y = 0$ or $x^2 + y^2 - 8y + (-4)^2 = (-4)^2$ or $x^2 + (y - 4)^2 = 16$. This is a circle of radius $\sqrt{16} = 4$ and center (0,4).

(7) 3. (a) Graph the leminiscate $r^2 = 4\sin 2\theta$

Instead of creating a table of values, we graph $y^2 = 4\sin 2x$ or $y = \pm 2\sqrt{\sin 2x}$ and use that instead of the table of values. Observe that if $\sin 2x > 0$ there are two possible y values because of the \pm and if $\sin 2x < 0$ then there are no possible values. Of course $\sin 2x > 0$ if $0 < x < \pi/2$ or $\pi < x < 3\pi/2$



(5) (b) Find the area inside one loop of the leminiscate $r^2 = 4 \sin 2\theta$ By Part (a) above we see that one loop is traced out for θ in the interval $0 < \theta < \pi/2$ (or $\pi < x < 3\pi/2$) so that the area is

$$\int_0^{\pi/2} \frac{1}{2} (f(\theta))^2 d\theta = \int_0^{\pi/2} \frac{1}{2} 4 \sin 2\theta d\theta = 2 \int_0^{\pi/2} \sin 2\theta d\theta = -\cos 2\theta \Big|_0^{\pi/2} = -\cos \pi + \cos 0 = 2$$