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1. Use the Comparison Test to determine if the series converges or diverges.(4)
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which is a p series with p = 3/2 > 1 and so it converges.

We also see that 0 ≤ cos2 n ≤ 1 so that
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and so the Comparison Test applies and we see that the given series is smaller than
a convergent p series and so it must also converge.

2. Use the Limit Comparison Test to determine if the series converges or diverges.(4)
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which is a p series with p = 1 (harmonic series) and

since p ≤ 1 it diverges. Try Limit Comparison

lim
n→∞

an
bn

= lim
n→∞

n(n+ 1)

(n2 + 1)(n− 1)
1

n

= lim
n→∞

n2(n+ 1)

(n2 + 1)(n− 1)
= 1

where the limit follows by l’Hôpital’s Rule (or factor n3 out of top and bottom).
Since the limit is 0 < 1 < ∞, the Limit Comparison Test says that the two series
both converge or both diverge but we know that
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diverges and so the given

series diverges.

3. Does the series converge or diverge? Use any method but give reasons for your
answer.(4)
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There are many ways to do this one. One simple way is to write it as the difference
of two series
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The second series is a geometric series with r = 1/2 and is convergent because
|r| = 1/2 < 1. The first series is smaller than the second
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and so it too must converge (by the Direct Comparison Test). This shows the given
series converges. Alternatively one could observe that

−
1

2n
≤

1− n

n2n
≤ 0

Since the series
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converges (geometric series with r = 1/2) it follows by the
Comparison Test that the given series converges. A third possibility is to apply
the ratio test.

4. Does the series converge or diverge? Give reasons for your answer. The ratio or
root test might help(4 ea)
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This is a good candidate for the root test because there are powers of n.
Consider therefore
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and the limit is smaller than 1 and so the series converges absolutely by the
root test.
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This is a good candidate for the ratio test because there are lots of multipli-
cations between terms. Consider therefore
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(where we note en+1 = e(en) and (n + 1)! = (n + 1)n!.) Since the limit is
larger than 1 the series diverges by the ratio test.


