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1. Use the Comparison Test to determine if the series converges or diverges.
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We compare to Z 7 which is a p series with p = 3/2 > 1 and so it converges.
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We also see that 0 < cos?n < 1 so that
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and so the Comparison Test applies and we see that the given series is smaller than
a convergent p series and so it must also converge.

. Use the Limit Comparison Test to determine if the series converges or diverges.
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We want to compare to Y  — which is a p series with p = 1 (harmonic series) and
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since p < 1 it diverges. Try Limit Comparison
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where the limit follows by 'Hopital’s Rule (or factor n® out of top and bottom).
Since the limit is 0 < 1 < 0o, the Limit Comparison Test says that the two series
both converge or both diverge but we know that > >° % diverges and so the given
series diverges.

. Does the series converge or diverge? Use any method but give reasons for your

answer.
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There are many ways to do this one. One simple way is to write it as the difference
of two series
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The second series is a geometric series with r = 1/2 and is convergent because
|r| = 1/2 < 1. The first series is smaller than the second
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and so it too must converge (by the Direct Comparison Test). This shows the given
series converges. Alternatively one could observe that
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Since the series > 7 2% converges (geometric series with r = 1/2) it follows by the

Comparison Test that the given series converges. A third possibility is to apply
the ratio test.

. Does the series converge or diverge? Give reasons for your answer. The ratio or

root test might help
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This is a good candidate for the root test because there are powers of n.

Consider therefore A
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and the limit is smaller than 1 and so the series converges absolutely by the

root test.
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This is a good candidate for the ratio test because there are lots of multipli-
cations between terms. Consider therefore
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(where we note e"™! = e(e") and (n + 1)! = (n + 1)n!.) Since the limit is

larger than 1 the series diverges by the ratio test.



