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1. Use the Comparison Test to determine if the series converges or diverges.(4)
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since p ≤ 1 it diverges. Try the Comparison Test
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diverges and so the given series diverges.

2. Use the Limit Comparison Test to determine if the series converges or diverges.(4)
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diverges. Try Limit Comparison
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where the limit follows by l’Hôpital’s Rule (or factor n3 out of top and bottom).
Since the limit is 0 < 1 < ∞, the Limit Comparison Test says that the two series
both converge or both diverge but we know that
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diverges and so the given

series diverges.

3. Does the series converge or diverge? Use any method but give reasons for your
answer.(4)
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which is a p series with p = 2 > 1 and so it converges. Limit

Comparison applies here.
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And this limit is 0 < 1 < ∞ and so the series both converge or diverge but
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converges and so the given series must also converge.

4. Does the series converge or diverge? Give reasons for your answer. The ratio or
root test might help(4 ea)
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This is a good candidate for the ratio test because there are lots of multipli-
cations between terms. Consider therefore
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(where we note 4n+1 = 4(4n) and (n + 1)! = (n + 1)n!.) Since the limit is
smaller than 1 the series converges absolutely by the ratio test.

(b)
∞
∑

n=1

(lnn)n

(n)n

This is a good candidate for the root test because there are powers of n.
Consider therefore
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by l’Hôpital’s rule. The limit is smaller than 1 and so the series converges
absolutely by the root test.


