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1. Write out the first few terms of the series to show how the series starts. Then find
(8) the sum of the series.
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Here a = 7 and r = 1/4 and since |r| < 1 the series converges to a/(1 —r)
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This is the sum of two geometric series 14+1/241/44. .. and 1—-1/5+1/25+. . ..
For the first a = 1 and » = 1/2 and |r| < 1 so that the first series converges;
for the second @ = 1 and » = —1/5 and again |r| < 1 and so both series

converge and we have

< (1 (-7 1 1 17
Z(zn+ 5n >_1—1/2_1—(—1/5)_6

n=0

2. For the geometric series below, determine a and r and find the sum of the series.
Then express the inequality |r| < 1 in terms of z and find the values of = for which

(5) the inequality holds and the series converges.
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Here a =1 and r = —(x — 3)/2 and so

(e}

I\" n 1 B 2 B 9
;0(—2) S e R L e e

provided |r| < 1 which means | — (x —3)/2| <lor|z—3|<2o0orl <z <5

3. Does the series converge or diverge? Give reasons for your answer. If the series

(2) converges then find its limit.
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This series diverges by the nth term test for divergence because the terms do not
converge to zero. Indeed
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(See page 556 of the text.)



4. Apply the Integral Test to determine if the series converges or diverges.
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Consider f(z) = 23:_ T for © > 1. Observe f(z) > 0 and f(z) is decreasing
x

because f'(z) = (1 — 2?)/(2? + 1) and that is negative if z > 1. Evaluate the
improper integral
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where we have substituted v = 2? + 1 so that du = 2x dx. Therefore
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Thus the improper integral diverges and so the series must diverge also by the
Integral Test:
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