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1. Express the integrand as a sum of partial fractions and evaluate the integral.
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The integrand 1/(¢> + t) already has the degree on bottom 3 higher than that on
top (0) and moreover the bottom factors as t* + ¢ = ¢(t? + 1). Therefore we can
already apply the partial fractions expansion which is of the form
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for some constants A, B and C. To solve for these constants we multiply by ¢(¢*+1)
and collect like coefficients.

1=AE+1)+(Bt+O)t=(A+B)#*+Ct+ A

A+ B =0
Equate like coefficients: C =0
A =1

Clearly A =1, C =0 and B = —1. Therefore
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Integrate each of the two terms separately
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In the second integral we substitute u = t?+1 so that du = 2t dt and the endpoints
of integration become u(1) =2 and u(v/3) = (v3)? +1 =4
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= ln\/§—ln1—§lnu|§: §1n3—§1n4—|—§1n2:5[1113—1112]
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Again this integral is by partial fractions. Division is not required. The bottom
factors as v> — v = v(v — 1) and so the partial fractions expansion is
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To find the actual constants A and B, multiply both sides by v(v — 1) and collect
up like coefficients.

2=Av—-1)+Bv=(A+Bjv—-A

Equating coefficients gives A+ B = 0 and —A = 2 so that A = —2 and B = 2.
Therefore
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Integrate.
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Here we have noticed the In is continuous and so we can move the limit “inside.”
This shows that the given integral converges and it converges to 21n 2



