Two Pages! 9/19/13

Quiz 4A, Math 1860-021 Solutions

Name

1. Evaluate the integrals in Parts (a) to (d). Use integration by parts as appropriate.

(5 ea)

(a)
$$\int xe^{3x} dx$$

We integrate by parts setting u = x and $dv = e^{3x} dx$. Therefore du = dx and $v = (1/3)e^{3x}$. We recall the formula $\int u dv = uv - \int v du$. Therefore

$$\int xe^{3x} dx = \frac{1}{3}xe^{3x} - \frac{1}{3}\int e^{3x} dx = \frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x} + C$$

Check by differentiation: By the product rule

$$\frac{d}{dx} \left[\frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} \right] = \frac{1}{3} x e^{x/3} \, 3 + \frac{1}{3} e^{3x} - \frac{1}{9} e^{3x} \, 3 = x e^{x/3}$$

(b)
$$\int \tan^{-1} y \, dy$$

We integrate by parts setting $u = \tan^{-1} y$ and dv = dx so that $du = 1/(1 + y^2) dy$ and v = y. Therefore

$$\int \tan^{-1} y \, dy = y \tan^{-1} y - \int \frac{y}{1+y^2} \, dy$$

To evaluate the integral we use u-substitution: $u = 1 + y^2$ so that du = 2y dy

$$\int \tan^{-1} y \, dy = y \tan^{-1} y - \frac{1}{2} \int \frac{1}{u} \, du$$
$$= y \tan^{-1} y - \frac{1}{2} \ln|u| + C = y \tan^{-1} y - \frac{1}{2} \ln(1 + y^2) + C$$

Check by differentiation.

$$\frac{d}{dy}\left[y\tan^{-1}y - \frac{1}{2}\ln(1+y^2)\right] = y\frac{1}{1+y^2} + \tan^{-1}y - \frac{1}{2}\frac{1}{1+y^2}2y = \tan^{-1}y$$

(c) $\int \sin^3 x \, dx$

Substitute $u = \cos x$ so that $du = -\sin x$ and $(\sin x)^2 = 1 - (\cos x)^2 = 1 - u^2$. Therefore

$$\int \cos^3 x \, dx = -\int 1 - u^2 \, du = -\left[u - \frac{1}{3}u^3\right] + C = -\cos x + \frac{1}{3}(\cos x)^3 + C$$

We can check by differentiation.

$$\frac{d}{dx} \left[-\cos x + \frac{1}{3} (\cos x)^3 \right] = \sin x + \frac{1}{3} 3(\cos x)^2 (-\sin x)$$

$$= \sin x \left[1 - (\cos x)^2 \right]$$

$$= \sin x \left[\sin^2 x \right] = (\sin x)^3$$

(d)
$$\int 16\sin^2 x \cos^2 x \, dx$$

Use the identities $\sin^2 x = (1/2)(1 - \cos 2x)$ and $\cos^2 x = (1/2)(1 + \cos 2x)$. The integrand is therefore

$$16\sin^2 x \cos^2 x = 4(1 - \cos 2x)(1 + \cos 2x) = 4(1 - (\cos 2x)^2) = 4(\sin 2x)^2$$

and again we apply the identity $(\sin 2x)^2 = (1/2)(1 - \cos 4x)$. Therefore $16\sin^2 x \cos^2 x = 2 - 2\cos 4x$.

(An alternative approach is to use the identity $2\sin x \cos x = \sin 2x$ so that $16\sin^2 x \cos^2 x = 4(\sin 2x)^2 = 2 - 2\cos 4x$.)

We are ready to integrate

$$\int 16\sin^2 x \cos^2 x \, dx = \int 2 - 2\cos 4x \, dx = 2x - \frac{1}{2}\sin 4x + C.$$

The check involves differentiation and reversing the use of identities above.