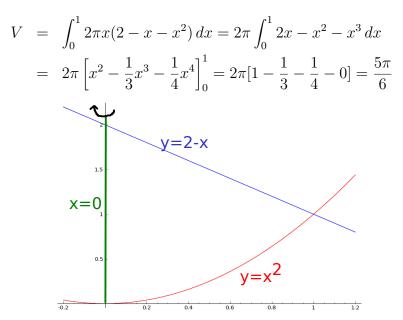
Two Pages!	Quiz 2A , Math 1860-021	
1/23/14	Solutions	Name

1. Use the shell method to find the volume of the solid generated by revolving the region bounded by the curve $y = x^2$ and y = 2 - x, x = 0, for $x \ge 0$ about the *y*-axis.

Graph the region. The two curves $y = x^2$ and y = 2 - x intersect when $x^2 = 2 - x$ or $x^2 + x - 2 = 0$ or (x - 1)(x + 2) = 0 so that x = 1 or x = -2 but we have $x \ge 0$ and so x = 1. By cylindrical shells, the volume is



- 2. Find the volume of the solid generated when the region bounded by the curves $y = \sqrt{x}$ and $y = x^2/8$ is rotated (a) about the x axis and (b) about the y-axis. In each case express your answer as a definite integral, ready to be evaluated, but do NOT evaluate. (Suggestion: Sketch the region.)
 - (a) The volume (as an integral) if the region is rotated about the x-axis Sketch the region. The curves intersect when $\sqrt{x} = x^2/8$ or $8\sqrt{x} - x^2 = 0$ or $\sqrt{x}(8 - x^{3/2})$ so that x = 0 or $x = 8^{2/3} = 4$. Using the washer method we get the volume V is

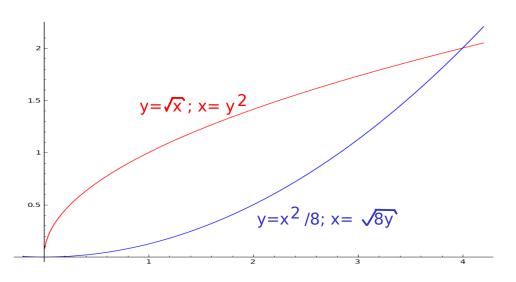
$$V = \int_0^4 \pi (\sqrt{x})^2 - \pi (x^2/8)^2 \, dx = \pi \int_0^4 x - x^4/64 \, dx$$

Alternatively cylindrical shells could be used but we need the bounding curves as functions of y: $x = y^2$ and $x = \sqrt{8y}$ which intersect when y = 0 and y = 2. The volume is

$$V = \int_0^2 2\pi y (\sqrt{8y} - y^2) \, dy = 2\pi \int_0^2 2^{3/2} y^{3/2} - y^3/4 \, dy$$

(4 ea)

(7)



(b) The volume (as an integral) if the region is rotated about the y-axis This is a different solid from Part 1. If we use cylindrical shells we get

$$V = \int_0^4 2\pi x \left[\sqrt{x} - \frac{x^2}{8} \right] \, dx = 2\pi \int_0^4 \frac{x^{3/2}}{x^{3/2}} - \frac{x^3}{8} \, dx$$

or we can use washers.

$$V = \int_0^2 \pi (\sqrt{8y})^2 - \pi (y^2)^2 \, dy = \pi \int_0^2 8y - y^4 \, dy$$

3. Set up an integral for the length of the curve $x = \sin y$, $0 \le y \le \pi$. Do NOT evaluate.

We see that $x' = \cos y$ so that the lenght of the curve is

$$\int_0^\pi \sqrt{1 + (\cos y)^2} \, dy$$

(5)