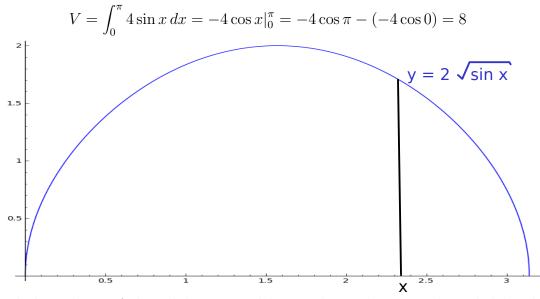
Two Pages!	Quiz 1B , Math 1860-003	
1/19/12	Solutions	Name

1. Find the volume of the solid whose base is the region between the curve $y = 2\sqrt{\sin x}$ and the interval $[0, \pi]$ on the *x*-axis. The cross sections perpendicular to the *x*-axis are squares whose bases run from the *x*-axis to the curve.

Sketch the solid or at least the base of the solid. The volume is

$$V = \int_a^b A(x) \, dx = \int_0^\pi A(x) \, dx$$

where A(x) is the area of the cross section which is a square with base length $2\sqrt{\sin x}$. Therefore the cross sectional area is $A(x) = (2\sqrt{\sin x})^2 = 4\sin x$ at x units from the y-axis, $0 \le x \le \pi$. Therefore the volume is



2. Find the volume of the solid generated by revolving the region bounded by the curve $y = x^2 + 1$ and y = x + 3 about the x-axis.

Sketch the region. The curves intersect when $x^2 + 1 = x + 3$ or $x^2 - x - 2 = 0$ or (x-2)(x+1) = 0 which means x = -1 or x = 2. The region is bounded above and below by functions of x and so is of "Type I" and the method of washers applies. The volume is

$$V = \int_{-1}^{2} \pi (x+3)^{2} - \pi (x^{2}+1)^{2} dx$$

$$= \pi \int_{-1}^{2} (x^{2}+6x+9) - (x^{4}+2x^{2}+1) dx$$

$$= \pi \int_{-1}^{2} -x^{4} - x^{2} + 6x + 8 dx$$

$$= \pi \left[-\frac{1}{5} x^{5} - \frac{1}{3} x^{3} + 3x^{2} + 8x \right]_{-1}^{2}$$

$$= \pi \left[-\frac{1}{5} 32 - \frac{8}{3} + 12 + 16 - (-\frac{1}{5} (-1)^{5} + \frac{1}{3} + 3 - 8) \right] = \frac{117\pi}{5}$$

(10)

(10)

