Page 1 of 5 PagesTest 2B, Math 185011-6-13Solutions

Name

Section 012

- 1. Find the derivative of the functions.
 - (a) $y = e^{2x} \cos 3x$ By the product rule (and chain rule)
 - $y' = e^{2x}(-\sin 3x)(3) + \cos 3xe^{2x}(2) = -3e^{2x}\sin 3x + 2\cos 3xe^{2x} = e^{2x}(-3\sin 3x + 2\cos 3x)$
 - (b) $g(s) = 10^s + \log_3 s$ We have

$$g'(s) = (\ln 10)10^s + \frac{1}{(\ln 3)s}$$

(c) $f(t) = \sin^{-1}(t^3) + \tan^{-1}(lnt)$ Here the chain rule applies

$$f'(t) = \frac{1}{\sqrt{1 - (t^3)^2}} \, 3t^2 + \frac{1}{1 + (\ln t)^2} \, \frac{1}{t} = \frac{3t^2}{\sqrt{1 - t^6}} + \frac{1}{t(1 + (\ln t)^2)}$$

2. Find the differential of the function $y = \sec(x^2)$. Differentiate $y = \sec(x^2)$ using the chain rule.

$$y' = \sec(x^2)\tan(x^2)2x = 2x\sec(x^2)\tan(x^2)$$

In differential notation

$$dy = 2x \sec(x^2) \tan(x^2) \, dx$$

3. Use implicit differentiation to find dy/dx if $e^y - x^3y = 1$. (8)

The given equation determines y as a function of x. Differentiate in x

$$e^y \frac{dy}{dx} - 3x^2y - x^3 \frac{dy}{dx} = 0$$

where the chain rule was applied to the first term and the product rule to the second term. Now solve for dy/dx.

$$(e^y - x^3)\frac{dy}{dx} = 3x^2y$$
, or $\frac{dy}{dx} = \frac{3x^2y}{e^y - x^3}$

4. Find the linearization L(x) of f(x) = 2x/(x+1) at a = 1. Recall L(x) = f(a) + f'(a)(x-a) (that is the formula for the tangent line). Here, by the quotient rule

$$f'(x) = \frac{2(x+1) - 2x}{(x+1)^2} = \frac{2}{(x+1)^2}$$

Evaluate f(a) = f(1) = 2/2 = 1 and f'(1) = 2/4 = 1/2 so that

$$L(x) = 1 + \frac{1}{2}(x - 1)$$

(21)

(8)

(8)

5. Use logarithmic differentiation to find dy/dx.

 $y = x^{\sqrt{x}}$

(9)

Take the natural logarithm of both sides and simplify

$$\ln y = \ln \left(x^{\sqrt{x}} \right) = x^{1/2} \ln x$$

Now we differentiate both sides.

$$\frac{y'}{y} = x^{1/2}(1/x) + (1/2)x^{-1/2}\ln x = \frac{2+\ln x}{2x^{1/2}}$$

by the product rule and then finding a common denominator. Now we solve for y' by multiplying both sides by y and then substituting for y.

$$y' = \left(\frac{2 - \ln x}{2x^{1/2}}\right) y = \left(\frac{2 + \ln x}{2x^{1/2}}\right) x^{\sqrt{x}}$$

6. Find the *absolute* maximum and minimum of $f(x) = x^3 - 6x - 2$ on the closed and bounded interval $-2 \le x \le 2$.

This uses the "closed interval method." We differentiate: $f'(x) = 3x^2 - 6 = 3(x^2-2)$ Step One is to find the critical points. We set $f'(x) = 3(x-\sqrt{2})(x+\sqrt{2})$ to equal 0 and find $x = \pm\sqrt{2}$. These are the only critical points because f'(x) is defined for all x. Also both critical points $x = \pm\sqrt{2}$ lie in the given interval $-2 \le x \le 2$. Step Two is to identify the endpoints: $x = \pm 2$.

Step Three is to evaluate at all the points:

Critical and End Points	Evaluate $f(x)$	Absolute Max/Min?
x = -2	f(-2) = 2	
$x = -\sqrt{2}$	$f(-\sqrt{2}) = 4\sqrt{2} - 2 \approx 3.66$	Abs. Max
$x = \sqrt{2}$	$f(\sqrt{2}) = -4\sqrt{2} - 2$	Abs. min
x = 2	f(2) = -6	

So that $x = -\sqrt{2}$ is the absolute maximum point with value $4\sqrt{2} - 2$ and $x = \sqrt{2}$ is the absolute minimum point with value $-4\sqrt{2} - 2$

7. At noon, ship A is 50 km west of ship B. Ship A is sailing east at 25 km/hr and ship B is sailing north at 30 km/hr. How fast is the distance between the ships changing at 4:00 P.M?

A sketch might place ship B at the origin at noon. It cruises north up the y-axis at 30 km/hr. Ship A starts at 50 km west of the origin: that is - 50 on the x-axis. It travels at 25 km/hr east which is in the positive direction on the x-axis. Let a = a(t) be the position of ship A on the x-axis and b of ship B: we know a' = 25and b' = 30. We are asked for the rate at which the distance between the ships is changing and so we let c be the distance between the ships and we want c'(4). (Time is in hours after noon.)

 $\mathbf{2}$

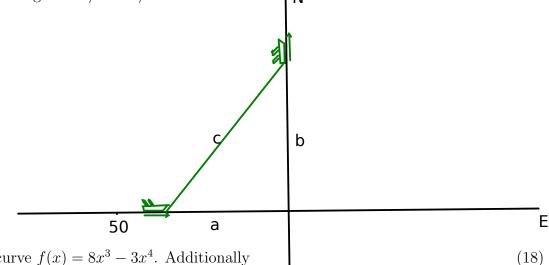
(12)

(16)

Relate a, b and c: $c^2 = a^2 + b^2$, by the Pythagorean theorem. Differentiate in t: 2cc' = 2aa' + 2bb' or cc' - aa' + bb'. Consider 4 P.M.: t = 4. We want c'(4). We know a'(4) = 25, b'(4) = 30 but what is a(4)? Ship A has traveled 4(25) km and so a(4) = 50. Similarly b(4) = 30(4) = 120. and so $c(4) = \sqrt{a(4)^2 + b(4)^2} = 120$ $\sqrt{50^2 + 120^2} = 130$. Therefore the distance between ships is increasing

$$c'(4) = \frac{aa' + bb'}{c} = \frac{(50)(25) + 120(30)}{130} = \frac{485}{13} \approx 37.3$$

where a calculator was used to give an approximation. The distance between the ships is increasing at 485/13 km/hr. Ν



- 8. Sketch the curve $f(x) = 8x^3 3x^4$. Additionally
 - (a) Find intervals of increase and decrease.
 - (b) Find the local maxima and minima.
 - (c) Find the intervals of concavity

We will need the first two derivatives: $f'(x) = 24x^2 - 12x^3 = 12x^2(2-x)$ and $f''(x) = 48x - 36x^2 = 12x(4 - 3x)$. The critical points x occur when f'(x) = 0or f'(x) does not exist. But $12x^2(2-x) = 0$ implies x = 0 or x = 2 and these are the only critical points. The intervals of increase and decrease are

Interval	Evaluate f'	Increasing or Decreasing
x < 0	f'(-1) = 36 > 0	Incr
0 < x < 2	f'(1) = 12 > 0	Incr
2 < x	f'(3) = -108 < 0	Decr

It follows that x = 2 is a local maximum where $f(2) = 8(2^3) - 3(2^4) = 16$. Check next concavity. The endpoints of intervals of concavity is where f''(x) = 0(inflection point) or f''(x) does not exist (or an endpoint of the domain). Here we set f''(x) = 0 to find 12x(4-3x) = 0 so that x = 0 or x = 4/3 corresponding to inflection points (0,0) and (4/3, 256/27). (f(-4/3) = -256/27). The intervals of concavity are

