Page 1 of 5 Pages
 Test 2A, Math 1850

 11-6-14
 Solutions

Section 011 Name

- 1. Find the derivative of the functions.
 - (a) $y = e^{3x} \sin 5x$ By the product rule (and chain rule)

$$y' = e^{3x}\cos 5x(5) + \sin 5xe^{3x}(3) = 5e^{3x}\cos 5x + 3\sin 5xe^{3x} = e^{3x}(5\cos 5x + 3\sin 5x)$$

(b) $g(s) = 3^s + \log_{10} s$ We have

$$g'(s) = (\ln 3)3^s + \frac{1}{(\ln 10)s}$$

(c) $f(t) = \sin^{-1}(\ln t) + \tan^{-1}(t^2)$ Here the chain rule applies

$$f'(t) = \frac{1}{\sqrt{1 - (\ln t)^2}} \frac{1}{t} + \frac{1}{1 + (t^2)^2} 2t = \frac{1}{t\sqrt{1 - (\ln t)^2}} + \frac{2t}{1 + t^4}$$

2. Find the differential of the function $y = \cot(\sqrt{x})$. Differentiate $y = \cot(x^{1/2})$ using the chain rule.

$$y' = -(\csc(x^{1/2}))^2 \frac{1}{2} x^{-1/2} = -\frac{1}{2x^{1/2} \sin(x^{1/2}))^2}$$

In differential notation

$$dy = -\frac{dx}{2x^{1/2}\sin(x^{1/2}))^2}$$

3. Use implicit differentiation to find dy/dx if $e^y - x^2y = 1$.

The given equation determines y as a function of x. Differentiate in x

$$e^y \frac{dy}{dx} - 2xy - x^2 \frac{dy}{dx} = 0$$

where the chain rule was applied to the first term and the product rule to the first term. Now solve for dy/dx.

$$(e^y - x^2)\frac{dy}{dx} = 2xy$$
, or $\frac{dy}{dx} = \frac{2xy}{e^y - x^2}$

4. Find the linearization L(x) of f(x) = 6x/(x+2) at a = 1.

Recall L(x) = f(a) + f'(a)(x - a) (that is the formula for the tangent line). Here, by the quotient rule

$$f'(x) = \frac{6(x+2) - 6x}{(x+2)^2} = \frac{12}{(x+2)^2}$$

Evaluate f(a) = f(1) = 6/3 = 2 and f'(1) = 12/9 = 4/3 so that

$$L(x) = 2 + \frac{4}{3}(x-1)$$

(21)

(8)

(8)

(8)

5. Find dy/dx. (Suggestion: Use logarithmic differentiation.)

 $y = x^{1/x}$

Take the natural logarithm of both sides and simplify

$$\ln y = \ln \left(x^{1/x} \right) = \frac{\ln x}{x}$$

Now we differentiate both sides.

 $\mathbf{2}$

$$\frac{y'}{y} = \frac{x(1/x) - (1)\ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

and solve for y' by multiplying both sides by y and then substituting for y.

$$y' = \left(\frac{1 - \ln x}{x^2}\right)y = \left(\frac{1 - \ln x}{x^2}\right)x^{1/x}$$

6. Find the *absolute* maximum and minimum of $f(x) = x^3 - 6x - 1$ on the closed and bounded interval $-2 \le x \le 2$.

This uses the "closed interval method." We differentiate: $f'(x) = 3x^2 - 6 = 3(x^2 - 2)$ Step One is to find the critical points. We set $f'(x) = 3(x - \sqrt{2})(x + \sqrt{2})$ to equal 0 and find $x = \pm\sqrt{2}$. These are the only critical points because f'(x) is defined for all x. Also both critical points $x = \pm\sqrt{2}$ lie in the given interval $-2 \le x \le 2$. Step Two is to identify the endpoints: $x = \pm 2$.

Step Three is to evaluate at all the points:

Critical and End Points	Evaluate $f(x)$	Absolute Max/Min?
x = -2	f(-2) = 3	
$x = -\sqrt{2}$	$f(-\sqrt{2}) = 4\sqrt{2} - 1 \approx 4.66$	Abs. Max
$x = \sqrt{2}$	$f(\sqrt{2}) = -4\sqrt{2} - 1$	Abs. min
x = 2	f(2) = -5	

So that $x = -\sqrt{2}$ is the absolute maximum point with value $4\sqrt{2} - 1$ and $x = \sqrt{2}$ is the absolute minimum point with value $-4\sqrt{2} - 1$.

7. At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/hr and ship B is sailing north at 25 km/hr. How fast is the distance between the ships changing at 4:00 P.M?

A sketch might place ship B at the origin at noon. It cruises north up the y-axis at 25 km/hr. Ship A starts at 150 km west of the origin: that is -150 on the x-axis. It travels at 35 km/hr east which is in the positive direction on the x-axis. Let a = a(t) be the position of ship A on the x-axis and b of ship B: we know a' = 35 and b' = 25. We are asked for the rate at which the distance between the ships is changing and so we let c be the distance between the ships and we want c'(4). (Time is in hours after noon.)

Relate a, b and c: $c^2 = a^2 + b^2$, by the Pythagorean theorem. Differentiate in t: 2cc' = 2aa' + 2bb' or cc' = aa' + bb'. Consider 4 P.M.: t = 4. We want c'(4). We know a'(4) = 35, b'(4) = 25 but what is a(4)? Ship A has traveled 4(35) = 140 km

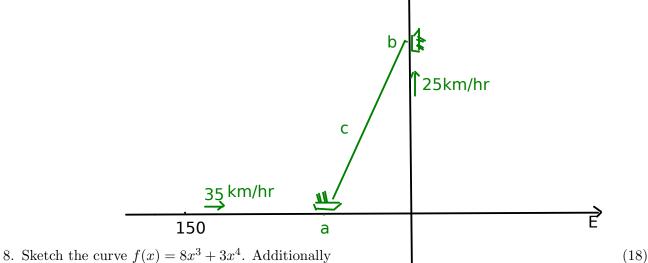
(9)

(16)

from -150 a(4) = -10. Similarly b(4) = 25(4) = 100. and so $c(4) = \sqrt{a(4)^2 + b(4)^2} = \sqrt{10^2 + 100^2} \approx 100.5$. Therefore the distance between ships is increasing

$$c'(4) = \frac{aa' + bb'}{c} = \frac{(-10)(35) + 100(25)}{100.5} \approx 21.4$$

where a calculator was used to give an approximation. The distance between the ships N is increasing at 21.4 km/hr.



- (a) Find intervals of increase and decrease.
- (b) Find the local maxima and minima.
- (c) Find the intervals of concavity

We will need the first two derivatives: $f'(x) = 24x^2 + 12x^3 = 12x^2(2+x)$ and f''(x) = $48x + 36x^2 = 12x(4+3x)$. The critical points x occur when f'(x) = 0 or f'(x) does not exist. But $12x^2(2+x) = 0$ implies x = 0 or x = -2 and these are the only critical points. The intervals of increase and decrease are

Interval	Evaluate f'	Increasing or Decreasing
x < -2	f'(-3) = -108 < 0	Decr
-2 < x < 0	f'(-1) = 12 > 0	Incr
0 < x	f'(1) = 36 < 0	Incr

It follows that x = -2 is a local minimum where $f(-2) = 8(-2^3) - 3(2^4) = -16$. Check next concavity. The endpoints of intervals of concavity is where f''(x) = 0 (inflection point) or f''(x) does not exist (or an endpoint of the domain). Here we set f''(x) = 0to find 12x(4+3x) = 0 so that x = 0 or x = -4/3 corresponding to inflection points (0,0) and (-4/3,-256/27). (f(-4/3) = -256/27). The intervals of concavity are

Interval	Evaluate f''	Concave Up or Down
x < -4/3	f''(-2) = 46 < 0	Up
-4/3 < x < 0	f''(-1) = -12 < 0	Down
0 < x	f''(1) = 84 > 0	Up

Now sketch the graph.

