Justify your work. A nongraphing calculator is permitted but not needed. The exam is 2 hours and 200 points are possible; the value of each question is indicated in the left margin. There are 9 pages, including this one: check that no pages are missing.

1. Differentiate the function.

(24) (a)
$$f(x) = \frac{2x+1}{x^2-x}$$

(b)
$$h(x) = 5x^3 \sin x$$

(c)
$$g(x) = \frac{1}{(x^4 + 3x)^{2/3}}$$

(d)
$$f(\theta) = \csc(8\theta)$$

2. Evaluate the limit, if it exists.

(15) (a)
$$\lim_{x \to 4} \frac{3x - 12}{x^2 - x - 12}$$

(b)
$$\lim_{\theta \to 0} \frac{\tan(4\theta)}{\theta}$$

(c)
$$\lim_{x \to \infty} \frac{-6x + 2x^3}{4 - x^2 - 5x^3}$$

- (9) 3. Find dy/dx by implicit differentiation. $x^2 5xy + \sqrt{y} = -10$
 - 4. Find all numbers at which the function

(12)
$$f(x) = \begin{cases} 2x+3 & \text{if } x \le 0\\ 2-x & \text{if } 0 < x < 2\\ (x-2)^2 & \text{if } x \ge 2 \end{cases}$$

is discontinuous. Explain your answer using, for example, limits or a sketch of the graph.

- (9) 5. Find an equation for the tangent line to the curve $y = \sqrt{8 + (1/x)}$ at (1,3).
 - 6. Use the definition of the derivative to find the derivative of the function.

(11)
$$f(x) = \frac{2}{3x - 1}.$$

- (10) 7. Evaluate the definite integral $\int_0^{\pi/2} \left(x\sqrt{x} + 4\cos x \right) dx$.
 - 8. Evaluate the indefinite integral.

(18) (a)
$$\int \frac{5t + t^{1/3}}{t^3} dt$$

(b)
$$\int t^2 \sqrt{5 + t^3} \, dt$$

- 9. Find a function f(x) such that $f'(x) = 3x + \sec^2 x$ and f(1) = 1/2.
- (12) (8) 10. Find the *derivative* of the function $g(x) = \int_{2}^{x} \frac{t}{t^4 + 7} dt$.
 - 11. Find the absolute maximum and minimum of $f(x) = 4x^2 x^4$, on the closed interval $-2 \le x \le 3$.
- (14)
 12. Sketch the graph of a function that satisfies all of the given conditions.
- (12) f'(-2) = 0; f'(0) = 0; $f'(x) < 0 \quad \text{if} \quad x < -2 \text{ or } x > 0,$ $f'(x) > 0 \quad \text{if} \quad -2 < x < 0,$ $f''(x) > 0 \quad \text{if} \quad x < -1 \text{ or } x > 1,$ $f''(x) < 0 \quad \text{if} \quad -1 < x < 1.$
 - 13. Let $f(x) = \frac{x-1}{x^2}$

(18)

(14)

- (a) Find the vertical and horizontal aymptotes, if any.
- (b) Find the intervals of increase or decrease.
- (c) Find the local maximum and minimum values.
- (d) Use the above information to sketch the graph y = f(x).
- 14. Two cars start from the same point. One car leaves at noon and travels west at 60 km/h. The other car leaves at 1 pm and travels south at 50 km/h. At what rate is the distance between the cars increasing at 2 pm?
- (14)

 15. If 7200 in² of material are available to make a box with square base and open top, find the largest possible volume of the box.