Chapter 3: Exponential and Logarithm Functions.

Exponential Functions. $a^n = a^n$

 $2^4 = 2^2*2^2$ (multiply 4 times0

$$(2^4)*(2^3) = 2^7$$

 $2^{(1/3)}$ is the unique (positive) number such that $(2^{(1/3)})^3=2$

$$2^{(-1/3)} = \frac{1}{2^{(1/3)}}$$

In general $2^{(-n)} = \frac{1}{2^n}$ for any n

$$2^{(5/3)} = (2^{(1/3)})^5 = (2^5)^{(1/3)}$$

We can take 2 to any fractional power with these definitions. The book argues that 2^x makes sense for any real number x because we can approximate x by its finite decimal expansion (which is rational) and take a limit. This is true but not so obvious.

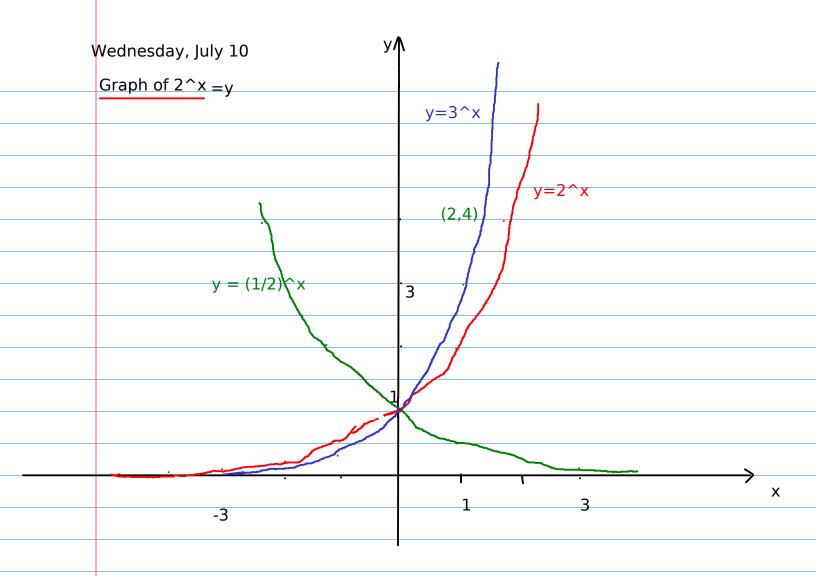
Properties of Exponential Functions: a^x where a>0

1)
$$(a^x)(a^y) = a^(x+y)$$

2)
$$a^x/a^y = a^(x-y)$$

3)
$$(a^x)^y = a^(xy)$$

4)
$$a^(-x) = 1/a^x$$



Graph of
$$(1/2)^x = 2^{-x}$$

Graph of
$$y = 3^x$$

Note $a^x>0$ for all x.

Differentiation:

If $f(x) = a^x$ then

$$\frac{f(x+h)-f(x)}{h} = \frac{a^{(x+h)-a^{x}}}{h} = \frac{a^{x}+a^{h-a^{x}}}{h} = a^{x} + a^{h-a^{x}}$$

This says f is differentiable at x if $\lim_{h\to 0} \frac{a^h-1}{h}$ exists. (f is differentiable

everywhere if it is differentiable at 0. The limit

$$\begin{array}{ccc}
& & & \underline{a \wedge h - 1} \\
& & & & \underline{a}
\end{array}$$

does indeed exist and so f(x) is differentiable and

$$\begin{array}{cccc} d & a^x = L & a^x \\ dx & a \end{array}$$

That is the derivative of a^x is a constant L_a times a^x. What is L_a? AS a>0 increases L_a increases and it goes from very negative when 0 < a << 1 to L_1=0 when a=1 to very positive when a>>1.

Definition: We define e> 1 to be the choice of a for which

$$\lim_{h \to 0} \frac{e^{h-1}}{h} = 1$$

$$L_{2} = 0.69$$

$$L_{3} = 1.03$$

Then 2<e <3 L_=1

$$\frac{d}{dx}$$
 $e^x = e^x$

We discover that e = 2.718281828495

e^x is the ``identity of differentiation'' It is the natural exponential

We shall define the ``natural logarithm'' In x to be the inverse of the function

e^x that is

$$\ln x = \log_{e} x$$

(log base e). So

$$e^{(\ln x)} = x$$
 and $\ln(e^x) = x$

Then $L_a = In(a)$.

$$\frac{d}{dx} a^{X} = (\ln a) a^{X}$$

$$\frac{d}{dx} 2^{X} = (\ln 2) 2^{X} = (0.6931) 2^{X}$$

Of course ln e = 1 and so

$$\frac{d}{dx} e^{X} = (\ln e) e^{X} = e^{X}$$

Example: Differentiate $y = e^{(3x)}$: $y'=e^{(3x)} = 3 e^{(3x)}$

Recall the chain rule
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

Example: Differentiate
$$y = e^(x^2)$$
 $y' = e^(x^2)2x = 2x e^(x^2)$

Example: Differentiate $y = x^2e^x$

Recall the product rule.
$$\frac{d}{dx} (f(x)g(x)) = g(x)\frac{d}{dx} f(x) + f(x)\frac{d}{dx} g(x)$$

Therefore y'=
$$\frac{e^x(2x) + x^2e^x = e^x[2x + x^2] = e^x[2x + x^2]}{e^x(2x) + e^x(2x) + e^x(2x)$$

Example: Differentiate
$$y = \frac{2x}{e}$$

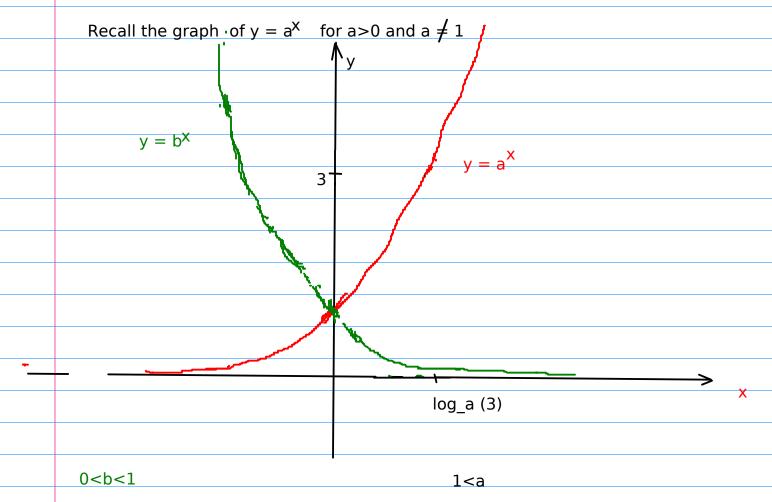
 x^2+3

Apply the Quotient Rule
$$\frac{d}{dx} \frac{N}{D} = \frac{D N' - ND'}{D^2}$$

to get
$$N = e^2x$$
 What is N'? $N'=e^2x *2 = 2e^2x$

$$y' = \frac{(x^2+3)2 e^{(2x)} - e^{(2x)} 2x}{[x^2+3]^2} = \frac{e^{(2x)}[2x^2-2x+6]}{[x^2+3]^2}$$

3.2 Logarithmic Functions



In either case the graph is ``one-to-one' that is given x there is one and only one y>0 so $y=a^x$ (Similarly if 0<a<1). Consequently we can define a function which takes y to the corresponding x. This is \log_a

$$\log a(a^x) = x$$
 and $a^(\log a) = x$

Example
$$log_2(4) = 2$$

 $log_10(1000) = 3$
 $log_3(1/27) = -3$

$$| \phi g_2(4) = | \log_2(2^2) = 2; \quad | \log_1(1000) = | \log_1(10^3) = 3; ; | \log_3(1/27) = 3;$$

$$= \log_3(27^{-1}) \log_3(3^{-3}) = -3$$

Notation: The Natural Logarithm is $\ln x = \log_e x$

Example
$$\ln \left(\frac{1}{e^3} \right) = -3$$
 $\ln \left(\frac{1}{e^3} \right) = \ln \left(\frac{e^{-3}}{e^{-3}} \right) = -3$

We write $\log \text{ for } \log = \log_{\text{a}}$ Properties of Logarithms a=2; $log(2^3*2^4) = log(2^7) = 7$ $1) \log(xy) = \log(x) + \log(y)$ $log(2^3) = 3 log(2^4) = 4$ $2)\log (x/y) = \log(x) - \log(y)$ $3)\log(x^k) = k\log(x)$ 4) $\log_{a} a = 1$ 5) $\log a^k = k$ 6) $\log 1 = 0$ 7) $\log x = \ln x$ (all logs differ by a multiplicative constant.) ln a λV y = x $y = e^x$ y = In x1 Χ 1

8)
$$\frac{d}{dx} \ln x = \frac{1}{x}$$

Differentiate
$$e^{\ln x} \frac{d}{dx} \ln x = \frac{d}{dx} x = 1$$

chain rule

So
$$x \frac{d}{dx} \ln x = 1 \text{ or}$$

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

Example 1 Differentiate
$$y = \ln (x^2 + x + 2)$$

Recall the chain rule:
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

Here
$$f(x) = \ln x$$
 and $g(x) = x^2+x+2$

$$y' = x^2 + x + 2$$
 $(2x+1) = 2x+1$
 $x^2 + x + 2$ $x^2 + x + 1$

Example 2 Differentiate
$$y = \ln \sqrt{x+1}$$

Simplify y =
$$\ln (x+1)^{(1/2)} = \frac{1}{2} \ln(x+1)$$

So
$$y' = \frac{1}{2} \frac{1}{x+1} = \frac{1}{2(x+1)}$$

Example Differentiate $y = ln[x^2(x+1)(x-3)]$ Simplify $y = \ln x^2 + \ln(x+1) + \ln(x-3) = 2\ln x + \ln(x+1) + \ln(x-3)$ so that $y' = \frac{2}{x} + \frac{1}{x+1} + \frac{1}{x-3}$ Example. Differentiate $y = [\ln x]^5$ Does y simplify? $y' = 5[\ln x]^4 (1/x) = \frac{5[\ln x]^4}{x}$

3.3 Applications: Uninhibited and Limited Growth Mo	aeis
---	------

We consider quantites y in our world that grow at a rate proportial to themselves

$$y' = ky$$

where k is the constant of proportionality and might be a positive or negative real number.

 $y = Ce^(kx)$ is an example of such y for any C. All y are of this form.

(x is time)

Examples: 1) Population. The number y of bacteria in a culture grows at a rate proportional to y. It is assumed that the food availability is constant and the death rate is proportional to the population.

- 2) Radioactive decay. Strontium 90 is a radioactive element and, as such, each atom has a certain probability of decaying into some-thing other than strontium 90 in a given time period. If y is the number of Strontium 90 atomd then y'=ky where k<0. The number of strontium 90 atoms is decreasing.
 - 3) A portfolio of investments in bonds grows in value at a

rate proportional to the values of the account or this is a close approximation

If the interest rate is 3% then the value of the is y where y' = (1.03)y

roughly. (This approximates compound interest when the compounding period is very short: ``continuous compounding.)

Example: A bond portfolio earns approxiately continuously compounded interest
at 4% per year. If the portfolio is worth \$60,000 now then how much
will it be worth in 2 years? in t years?