Section 2.1 in the Text

Theorem 3 First Derivative Test for Relative Extrema:

Suppose that c is the only critical point of f(x) in some interval (a,b). a < c < b

- 1) If f'(x) < 0 for x < c and f'(x) > 0 for c < x then c is a relative min
- 2) If f'(x)>0 for x<c and f'(x)<0 for c<x then c is a relative max
- 3) Otherwise f'(x) does not change sign at c and c is not a relative extrema.

Example $f(x) = x^2$ has a critical point when f'(x) = 2x = 0, and that is a relative min because f'(x) = 2x goes from negative to positive at x = 0.

Example $f(x) = x^3$ has a critical point when $f'(x) = 3x^2 = 0$ and that is x=0 but that is not a relative max nor min because f'(x) does not change sign (it is nonnegative) at x = 0.

Example:

Find the relative extrema of $f(x) = 4x^3 - 3x^4$

Solution: $f'(x) = 12x^2-12x^3 = 12x^2(1-x)$

The critical points are where f'(x) = 0 and that is at x = 0 and x = 1.

There are no points where f'(x) does not exist and so there are no other critical points.

Near x = 0, f'(x) > 0 so that x = 0 is neither a local max nor min.

At x = 1 f'(x) goes from being positive to being negative as x increase through 1

(f'(x)>0 if x<1 and f'(x)<0 if x>1.) Therefore x=1 is a relative max

	Definition: If $f''(a) = 0$ then $(a,f(a))$ is said to be a point of inflection.						
f"(a)=0		nsition from concave up t or <u>f"(a) does not exist.</u>	o down or vice versa at a	then a is an			
	Example: Graph $y = 6x^2 - x^4$. Indicate relative max and min.						
	Check that $y' = 12x - 4x^3 = \frac{4x(3 - x^2)}{y'' = 12 - 12x^2 = 12(1-x^2) = 12(1-x)(1+x)}$						
	y''(x) = 0 at $x = +/-1$ If $x<-1$ then $y''<0$ The inflection points are $(-1,5)$ and $(1,5)$. Note y'' is defined everywhere. Find the intervals of concavity						
	(-∞,-1)	y"(-2)=12(3(-1)<0	concave down				
	(-1,1)	y"(0) =12>0	concave up				
	(1,00)	y"(2) =12(-1)(3)<0	concave down				
	Now lets graph	We see from looking at	t y' that the critical points	are			
\rightarrow	$x = 0, +/-\sqrt{3}$	y=6x^2-x^4		uic			
	(-ੴ,-√3)	y'(-2)=4(-2)(3-4)=8>0	0 Increasing	-√3 is a rel max			
	(- √3 ,0)	y'(-1) = 4(-1)(3-1) < 0	Decreasing				
	(0, $\sqrt{3}$)	y'(1) = 41(3-1)>0	Increasing				
	(√3`,∞□)	y'(2) = 4(2)(3-4) < 0	Decreasing				
		√3					
	0 is a relative	min and is a	relative min				
	Now graph						

		Х	У	y'	y''
		-2	8	8	<0
\rightarrow		- √ 3	9	0	<0
	>	-1	5	-8	0
_ _		0	0	0	>0
_	→	1	5	8	0
_	>	√ 3	9	0	<0
		2	8	-8	<0

2.3 Graph Sketching: Asymptotes and Rational Functions.

A rational function is the ratio of two polynomials

Examples 1)
$$f(x) = \frac{2x+4}{x+1}$$

2)
$$f(x) = \frac{x+1}{x^2+3}$$

3)
$$g(x) = \frac{4x^2+5}{x^2+5x+6}$$

4) h(t) =
$$\frac{5t^3 + t^2 + 2t}{t^2 - 3t + 2}$$

Vertical Asymptotes correspond to points x where there is a division by 0

Example: 1) A vertical asymptoe for the curve y = f(x) is x = -1

2) No vertical asymptote because x^2+3 is never 0

3)
$$x^2+5x+6 = (x+2)(x+3)$$
 x=-2 and x=-3 are the two vertical asymptotes

4)
$$t^2-3t+2 = (t-2)(t-1)$$
 $t=1$ and $t=2$ are vertical asymptotes

Horizontal Asymptote to y=f(x) correspond to a straight line y= constant so that the curve gets close to the line for large x (positive or negative)

For rational functions factor out the highest power downstairs

$$\lim_{x \to \infty} \frac{1}{x} = 0 \qquad \lim_{x \to -\infty} \frac{1}{x} = 0$$
Example 1) $f(x) = \frac{2x+4}{x+1} = \frac{x}{x} \frac{(2+4/x)}{(1+1/x)}$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2 + 4/x}{1 + 1/x} = \frac{2 + 0}{1 + 0} = 2$$
Horizontal Asymptote is
$$y = 2$$
at $x = \infty$ and at $x = -\infty$

So y=2 is a horizontal asymptote.

Taking the limit as x goes to - gives the same value y=2 is a horizontal asymptote at +/- \frown

Example 2) 2)
$$f(x) = \frac{x+1}{x^2 + 3}$$
 (degree on bottom larger)

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{x+1}{x^2} = \lim_{x\to\infty} \frac{(1/x + 1/x^2)}{(1 + 3/x^2)} = \lim_{x\to\infty} \frac{1/x + 1/x^2}{(1 + 3/x^2)} = \frac{0}{1} = 0$$

So the horizontal asymptote is y = 0

(Same as x approaches - 🙀)

Example 3)
$$g(x) = \frac{4x^2+5}{x^2+5x+6}$$
 (degree on bottom equals degree on top)

$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{x^2}{x^2} \frac{4 + 5/x^2}{1 + 5/x + 6/x^2} = \lim_{x \to \infty} \frac{4 + 5/x^2}{1 + 5/x + 6/x^2} = \frac{4 + 0}{1 + 0 + 0} = 4$$

So y = 4 is a horizontal asymptote

Example 4)
$$h(t) = \frac{5t^3 + t^2 + 2t}{t^2 - 3t + 2}$$
 (degree on bottom is one smaller than

$$h(t) = \frac{t^2}{t^2} \frac{5t + 1 + 2/t}{1 - 3/t + 2/t^2} = \frac{5t + 1 + 2/t}{1 - 3/t + 2/t^2} \sim \frac{5t + 1 + 0}{1 - 0}$$

So y = 5t+1 is an oblique asymptote.

If the degree on top is 2 or more larger than that on the bottom then this doesn't work. There is no asymptote

Example $y = \frac{x^3}{x+1}$ does not have a horizontal or oblique asymptote
x
Example: Graph $y = \frac{x}{x-2}$
Solution a) intercepts b) Asymptotes (and domain)
b) / b) mpcocco (and domain)