Example: Express $F(x) = (x^3+5x)^(1/3)$ as f(g(x)). That is find f and g. $g(x) = x^3 + 5x$ $f(x) = x^{(1/3)}$ Example If F(x) = 4 then express F(x) as f(g(x))x^2+4 f(x) = 4/x and $g(x) = x^2+4$ Chain Rule: $f \circ g' = f'(g(x))g'(x)$ Example Differentiate $F(x) = (x^3+5x)^(1/3)$ $F'(x) = (1/3)(x^3+5x)^{-2/3}(3x^2 + 5)$

1.8 Higher Order Derivatives.

The Derivative as a Function

Example: If
$$f(x) = x^3 + 4x + 8$$
 then

the first derivative is $f'(x) = \frac{d}{dx} f = 3x^2 + 4$ and the second derivative is $f''(x) = \frac{d^2}{dx^2} f(x) = 6x$

the third derivative is
$$f'''(x) = \frac{d^3}{dx^3} f(x) = 6$$
 $f^{(4)}(x) = 0$

	0 1 X	
	If s(t) is a function of time that indicates where along a straight line an object is then	
	$s'(t) = \lim s(t+h) - s(t)$	
	h→0 h	
	diamle consent aventhe times into miss [t.t. b.] divided	
	displacement over the time interval [t,t+h] divided by time elapsed (that is average velocity)	
	s'(t) is the (instantaneous) velocity.	
	s"(t) is the acceleration (F = ma Newton's law of motion)	
Example: A ball thrown from 6 feet off the ground with initial velocity 6		
	is	
	s(t)=-16t^2 + 64 t +6 feet	
	above ground level t seconds later.	
	v(t) = s'(t) = -32t + 64	
	so that the ball continues up for 2 seconds and then falls. When $t=2$ v(2)=-32(2)-64=0	
s(2)=70?		
	a(t) =s"(t)= -32 is the acceleration due to gravity. (in feet per second 2)	
	Summary: First derivative of position (or displacement) is velocity and the second derivative is acceleration.	

2.1 Using the first Derivative to Find Maximum and Minimum and Sketch Graphs

decreasing

Definition: A function f is said to be increasing on an interval I if for any a < b , a,b in I

If f(x) is differentiable on I and if f'(a)>0 then

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$\frac{f(a+h)-f(a)}{b} > 0 \qquad (for h>0 or h<0)$$

so f is increasing.

Theorem 1 If
$$f'(x)>0$$
 for all x in $I=(c,d)$ then f is increasing on I If $f'(x)<0$ for all x in $I=(c,d)$ then f is decreasing on I

Definition: A number c is a critical number of a function f(x) if either

- 1) f'(c) = 0
- or
- 2) f' does not exist at c

Example: $f(x) = x^2-6x + 3$ has a critical point at?

Set to 0.2x-6 = 0 so that x=3 is the only critical point of f.

Example $f(x) = |x| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$

The critical points are the points where f can change from being increasing to being decreasing or the reverse (decreasing to increasing)

maximum

<u>Definition</u>: A number c is a relative <u>minimum</u> for f(x) if there exists an open interval I containing c so that $f(c) \le f(x)$ for all x in I.

$$f(c) \ge f(x)$$

	Formstalle Theorems (f.f(v)) has a valetime province or pointing at v			
	Fermat's Theorem: If $f(x)$ has a relative maximum or minimum at $x=c$ then c is a critical point (that is: if $f'(c)$ exists then $f'(c)=0$)			
	$f'(c) = \lim f(c+h)-f(c)$			
	h → 0 h			
	In the case c is a relative min, $f(c+h)-f(c) \ge 0$ so that the limit from the			
	right is nonegative and the limit from the left is not positive but			
	the limit from the left and right must be equal.			
	Example: Find the relative extren	na of $f(x) = 2x^3 - 3x^2 - 12x + 6$		
	and graph the function.			
	Solution Differentiate fl(x) = 6x/			
Set 6(x-2)	(x+1)=0	$\frac{^2}{2 - 6x - 12} = 6(x^2 - x - 2) = 6(x - 2)(x + 1)$		
	The critical points can only occur at \underline{x}			
	Observe that $f'(-2) = 6(4+2-2) > 0$ so	_		
	f'(0) =-12 <0 so that f i	s decreasing -1 <x <2<="" td=""></x>		
	f'(3)=6(4)>0 so that f	is increasing. x>2		
	We see that $x = -1$ is a relative max an	dx = 2 is a relative min and those		
	are the only relative extrema. We mak $(x,f(x))$ on the graph. Certainly we incl	·		
x I	y=f(x) y'	1 y		
-+	(-1,13)	13		
-2	2 24			
-1	13 0			
0	6 -12			
2	-14 0	6		
f(x)=2x^	3-3x^2-12x+6	2		
f'(x) = 6(x-2)(x+1)	- X		
	-1			
		(2,-14)		

Theorem 3 First Derivative Test for Relative Extrema:

Suppose that c is the only critical point of f(x) in some interval (a,b). a < c < b

- 1) If f'(x) < 0 for x < c and f'(x) > 0 for c < x then c is a relative min
- 2) If f'(x)>0 for x<c and f'(x)<0 for c<x then c is a relative max
- 3) Otherwise f'(x) does not change sign at c and c is not a relative extrema.

Example $f(x) = x^2$ has a critical point when f'(x) = 2x = 0, and that is a relative min because f'(x) = 2x goes from negative to positive at x = 0.

Example $f(x) = x^3$ has a critical point when $f'(x) = 3x^2 = 0$ and that is x=0 but that is not a relative max nor min because f'(x) does not change sign (it is nonnegative) at x = 0.

Example:

Find the relative extrema of $f(x) = 4x^3 - 3x^4$

Solution: $f'(x) = 12x^2-12x^3 = 12x^2(1-x)$

The critical points are where f'(x) = 0 and that is at x = 0 and x = 1.

There are no points where f'(x) does not exist and so there are no other critical points.

Near x = 0, f'(x) > 0 so that x = 0 is neither a local max nor min.

At x = 1 f'(x) goes from being positive to being negative as x increase through 1

(f'(x)>0 if x<1 and f'(x)<0 if x>1.) Therefore x=1 is a relative max

