For
$$f(x) = x^2+3x-4$$
 compute $f(x+h)-f(x)$.

and then compute f'(x)

$$f(x+h) = (x+h)^2 + 3(x+h)-4 = x^2 + 2xh + h^2 + 3x + 3h-4$$

$$f(x) = x^2 + 3x-4$$

$$f(x+h)-f(x) = 2xh + h^2 + 3h = h(2x+h+3)$$

$$\frac{f(x+h) - f(x)}{h} = \frac{h(2x+h+3)}{h} = 2x+h+3$$

Therefore
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 2x + h + 3 = 2x+3$$

Review from Section 1.2

Definition: A function f(x) is continuous at x = a if

- 1) f(a) exists (that is a is in the domain of f)
- 2) lim f(x) exists x + a
- 3) $\lim_{x \to a} f(x) = f(a)$

The function f(x) is continuous if it is continuous at every point a in its domain

Graphicly, f(x) is continuous if you can draw the graph without removing pen from paper.

Example: If

$$f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ x + b & \text{if } x \ge 2 \end{cases}$$

then

$$\lim_{x\to 2^-} f(x) = 4$$
 (= $\lim_{x\to 2^-} x^2 = 4$)

$$\lim_{x\to 2+} f(x) = 2+b = f(2)$$

For continuity at x=2 need 2+b=4

So f is continuous at x=2 if and only if a=2 and it is

y = x+2

Recall from Wed. June 19

$$\frac{\text{Power Rule}}{\text{dx}} \quad \frac{\text{d}}{\text{dx}} \quad x^{\text{n}} \quad = \quad nx^{\text{n-1}}$$

all n = 0,1,2,3, (and in fact all n)

Example
$$\frac{d}{dx} x^7 = 7x^6 \qquad n = 7$$

Example
$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx} x^{1/2} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}$$
 $n = 1/2$

as we saw in an example in Section 1.4.

Sum-Difference Rule
$$\frac{d}{dx}(f(x)\pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$$

Theorem 3 If c is a constant
$$\frac{d}{dx} cf(x) = c \frac{d}{dx} f(x)$$

These rules follow directly from the corresponding rules for limits.

Example; Differentiate $y = 3x^5 + 4x^2 + 2x + 11$

$$y' = 3(5x^4) + 4(2x) + 2 + 0 = 15x^4 + 8x + 2$$

Example If
$$y = x^2 + \frac{1}{x^2}$$
 then what is y'?

$$y = x^2 + x^{(-2)}$$

$$y' = 2x + (-2 x^{(-3)}) = 2x - \frac{2}{x^3}$$

1.6 Differentiation Techniques: The Product and Quotient Rules.

Product Rule: If F(x) = f(x)g(x) (and f and g are differentiable at x) then

$$F'(x) = \underline{\frac{d}{dx}} (f(x) g(x)) = f(x) [\underline{\frac{d}{dx}} g(x)] + g(x) [\underline{\frac{d}{dx}} f(x)]$$

(Alternative notation: F'(x) = f(x)g'(x)+g(x)f'(x).)

Example: Differentiate $(x^3 + 4x + 7)(x^2 + 5x)$ using the product rule.

$$\frac{d}{dx}(x^3+4x+7)(x^2+5x) = (x^3+4x+7)(2x+5) + (x^2+5x)(3x^2+4)$$

$$\frac{d}{dx} x^3 + 4x + 7 = 3x^2 + 4$$

Example: Differentiate $y = x^3 \sqrt{x}$

Recall that
$$\frac{d}{dx} \sqrt{x} = \frac{d}{dx} x^{(1/2)} = \frac{1}{2} x^{(-1/2)}$$
 (power rule)

so that, by the product rule

$$y' = x^{3}(\frac{1}{2}x^{(-1/2)}) + x^{(1/2)(3x^{2})}$$

$$= \frac{1}{2} x^{(5/2)} + 3 x^{(5/2)} = \frac{7}{2} x^{(5/2)}$$

This agrees with the power rule if we observe that $x^3\sqrt{x} = x^{7/2}$ = x^3 $x^{(1/2)}$

Quotient Rule: If
$$Q(x) = \frac{N(x)}{D(x)}$$
 then

$$Q'(x) = \frac{D(x) N'(x) - N(x)D'(x)}{[D(x)]^2}$$

(Assuming N and D are differentiable and D(x) \neq 0.)

Example: Differentiate Q(x) =
$$\frac{7x}{x^2 - 4x + 1}$$

$$Q'(x) = \frac{(x^2-4x+1)7 - (7x)(2x-4)}{[x^2-4x+1]^2} = \frac{7x^2-28x+7-74x^2+28x}{[x^2-4x+1]^2}$$

$$[x^2 - 4x + 1]^2$$

$$= \frac{7-7x}{[x^2 - 4x + 1]^2}$$
Example: Differentiate $Q(x) = \frac{1}{x^3}$

$$Q'(x) = \frac{x^3 *0 - 1(3x^2)}{[x^3]^2} = \frac{-3x^2}{x^6} = -3 \frac{1}{x^4} = -3 x^{-4}$$

Alternatively
$$Q(x) = x^{-3}$$
 Power rule says $Q' = -3x^{-4}$

Example

$$Q(x) = \frac{x^3 + 4x}{x^2 + 5}$$

$$Q'(x) = \frac{(x^2+5)(3x^2+4) - (x^3+4x)(2x)}{[x^2+5]^2}$$

$$= 3 x^4 + 4x^2 + 15x^2 + 20 - 2x^3 - 8x^2$$
$$[x^2 + 5]^2$$

$$= \frac{3x^4 - 2x^3 + 11x^2 + 20}{[x^2 + 5]^2}$$

1.7 Chain Rule

Extended Power Rule:
$$\frac{d}{dx} [f(x)]^{k} = k [f(x)]^{k-1} \frac{df}{dx} (x)$$

Example Differentiate
$$y = (x^2+2)^7$$
 $f(x) = x^2+2 k=7$

$$y' = 7(x^2+2)^6 2x = 14x(x^2+2)^6$$

Example Let
$$f(x) = \sqrt{4x + 11} = (4x+11)^{(1/2)}$$

Find

$$f'(x) = \frac{1}{2}(4x+11)^{(-1/2)*4} = \frac{2(4x+11)^{(-1/2)}}{2} = \frac{2}{\sqrt{4x+11}}$$

Example: Let
$$g(x) = x \sqrt{4x + 11}$$
 Find $g'(x)$.

Use the product rule.

$$g'(x) = \sqrt{4x+11} + x \frac{2}{\sqrt{4x+11}}$$

Composition of Functions: Given two functions f and g it is possible to form a new function

$$f \circ g(x) = f(g(x))$$

For example
$$f(x) = \sqrt{x}$$
 $g(x) = 1/x$ $f(g(x)) = \sqrt{\frac{1}{x}} = 1/\sqrt{x}$

(Press the reciprocal

button and then the square root button on your calculator.)

Example: Express $F(x) = (x^3+5x)^(1/3)$ as f(g(x)). That is find f and g.

$$g(x) = x^3+5x$$
 $f(x) = x^{(1/3)}$ Then $F(x) = f(g(x))$

Example If
$$F(x) = 4$$
 then express $F(x)$ as $f(g(x))$
 x^2+4

$$g(x) = x^2+4$$
 $f(x) = 4/x$ then $F(x) = f(g(x))$

Chain Rule:

$$f \circ g' = f'(g(x))g'(x)$$

$$f \circ g'(x) = f'(g(x))g'(x)$$

Example: Differentiate $F(x) = (x^3+5x)^(1/3)$ $g(x) = x^3+5x$ $f(x) = x^(1/3)$

$$F'(x) = (1/3)(x^3+5x)^{-2/3}(3x^2+5)$$

$$f'(x) = 1/3x^{(-2/3)} f'(g(x)) = 1/3 (x^3+5x)^{(-2/3)}$$

Example: Differentiate
$$F(x) = \frac{4}{x^2+4} = 4(x^2+4)^{-1}$$

$$F'(x) = 4 (-1) (x^2+4)^(-2) (2x)$$

$$=-8 \times (x^2+4)^(-2)$$

1.8 Higher Order Derivatives.

The Derivative as a Function

Example: If
$$f(x) = x^3 + 4x + 8$$
 then

the first derivative is
$$f'(x) = \frac{d}{dx} f =$$
 and the second derivative is $f''(x) = \frac{d^2}{dx^2} f(x) =$

the third derivative is
$$f'''(x) = \frac{d^3}{dx^3} f(x) =$$

If s(t) is a function of time that indicates where along a straight line an object is then

$$s'(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h}$$

displacement over the time interval [t,t+h] divided by time elapsed (that is average velocity)

s'(t) is the (instantaneous) velocity.

s"(t) is the

Example A ball thrown from 6 feet off the ground with initial velocity 64 ft/sec is

$$s(t)=-16t^2+64t+6$$
 feet

above ground level t seconds later.

$$v(t) = s'(t) = -32t + 64$$

so that the ball continues up for 2 seconds and then falls.

a(t) = s''(t) = -32 is the acceleration due to gravity. (in feet per second 2)

Summary: First derivative of position (or displacement) is velocity and the second derivative is acceleration.

2.1 Using the first Derivative to Find Maximum and Minimum and Sketch Graphs

A function f is said to be increasing on an interval I if for any a<b , a,b in I

If f(x) is differentiable on I and if f'(a)>0 then

$$\frac{f(a+h)-f(a)}{h} > 0 \qquad (for h>0 or h<0)$$

so f is increasing.

Theorem 1 If f'(x)>0 for all x in I=(c,d) then f is increasing on IIf f'(x)<0 for all x in I=(c,d) then f is decreasing on I

Definition: A number c is a critical number of a function f(x) if either f'(c) = 0 or f' does not exist at c

Example: $f(x) = x^2-6x + 3$ has a critical point at?

$$f'(x) = 2x-6$$

Set to 0.2x-6 = 0 so that x=3 is the only critical point of f.

Example
$$f(x) = |x| = \begin{cases} x & \text{if } x \neq 0 \\ -x & \text{if } x < 0 \end{cases}$$

Critical points of f?

The critical points are the points where f can change from being increasing to being decreasing or the reverse (decreasing to increasing)